logo
Алгебраические группы матриц

1.3 Компоненты алгебраической группы

Пусть --- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия называеются компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.

1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами группы в полиномиальной топологии). --- единственная связная замкнутая подгруппа конечного индекса в . Аннулятор компоненты связан с аннулятором всей группы следующим образом:

для некоторого , зависящего от

, где --- аннулятор единицы в , --- некоторый многочлен из .

Доказательство. а) Пусть --- общее поле определения всех компонент группы . Пусть , содержат единицу , , --- их независимые общие точки над и , . Имеем специализации

над , откуда , , . Этим доказана единственность компоненты .

б) Очевидно, что отображения

являются гомеоморфизмами пространства . Так как инвариантна относительно них, то --- нормальная подгруппа группы .

в) Пусть . Тогда при фиксированном --- снова все компоненты группы . В частности, , . Этим доказано, что --- смежные классы по и, значит, связные компоненты группы .

г) Если --- связная замкнутая подгруппа группы , то, предыдущему, . Если, кроме того, конечного индекса, то она той же размерности, что и , потому совпадает с .

д) Для каждого возьмем многочлен

Пусть --- точка из , в которой . Рассмотрим многочлен

Он искомый. В самом деле, очевидно, . Оба включения справа налево очевидны (использовать простоту идеала ). Остается доказать включение

Пусть , . Имеем:

Если , то , если же , , то . В любом случае . Следовательно, . Теорема доказана.

Мы видим, в частности, что для алгебраической группы неприводимость и связность в полиномиальной топологии --- одно и то же; в дальнейшем мы будем пользоваться только вторым термином, чтобы избежать путаницы с понятием матричной приводимости групп (к полураспавшейся форме).

Доказать, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса.

Подгруппа алгебраической группы тогда и только тогда замкнута, когда замкнуто её пересечение со связной компонентой единицы .

<<Только тогда>> очевидно. <<Тогда>> вытекает из 9.1.9, если заметить, что

Конечная нормальная подгруппа связной алгебраической группы всегда лежит в центре .

В заключение отметим, что если в качестве универсальной области выбрано поле комплексных чисел , то в алгебраической группе можно рассматривать две топологии --- полиномиальную и евклидову. Ясно, что вторая тоньше первой, поэтому, в частности, евклидова связная компонента единицы содержится в полиномиальной связной компоненте. Можно было бы доказать и обратное, т. е. на самом деле связные компоненты комплексной алгебраической группы в обеих топологиях одни и те же. Этот результат становится неверным, если рассматривать -порцию комплексной алгебраической группы (по поводу определения см. следующий пункт).