logo
Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

§1. Пространство Минковского

Пространством Минковского называется четырехмерное псевдоевклидово пространство индекса 1.

Герман Минковский предложил данное пространство в 1908 году в качестве геометрической интерпретации пространства-времени специальной теории относительности.

Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве.

После евклидовых пространств индекса k=0, т.е. собственно евклидовых, наибольший интерес представляют евклидовы простран-ства индекса k=1 (они, конечно, принадлежат к псевдоевклидовым пространствам). Евкли-дово пространство индекса 1 представляет интерес с точки зрения теории дифференциальных уравнений (волновое уравнение с п аргу-ментами) и особенно с точки зрения теории относительности. В по-следнем случае играет роль именно четырехмерное евклидово пространство индекса 1.

Данное пространство может быть получено на базе четырехмерного аффинного пространства А, с помощью введения скалярного умножения векторов.

Пусть некоторый репер аффинного пространства А4, где , .

Введем скалярное умножение по формуле:

. (1)

Пространство A4, для векторов которого введено скалярное умножение по формуле (1) называется четырехмерным псевдоевклидовым пространством индекса 1 или пространством Минковского. Обозначается 1R4.

Скалярный квадрат вектора определяется по формуле:

. (2)

При этом вектора репера будут иметь следующие скалярные квадраты:

(3)

Определение 1.1. Длиной вектора в пространстве Минковского будем называть число:

Определение 1.2. Векторы пространства Минковского называются ортогональными, если их скалярное произведение равно нулю.

Таким образом, в пространстве 1R4 будут существовать векторы трех типов.

1. Векторы действительной длины при .

Например, (2,1,1,2).

2. Векторы мнимой длины при .

Например, (3,1,1,1).

3. Ненулевые векторы нулевой длины при .

Например, (6,2,4,4).

Такие векторы называются изотропными. Они лежат на изотропном конусе.

Уравнение конуса будет иметь вид

-(x0)2+(x1)2+(x2)2+(x3)2=0

Такой конус также называют световым.

Расстояние с(М,N) между точками М(x1,x2,x3,x4) и N(у1,у2,у3,у4) в пространстве 1R4 определяется как длина вектора (у1- x1, у2- x2, у3- x3, у4- x4) и равна

с(М,N)= (5)

В пространстве 1R4 существует три типа прямых.

1. Прямые действительной длины (R1), направляющий вектор которых является вектором действительной длины. Например, е = [].

2. Прямые мнимой длины (1R1), направляющий вектор которых является вектором мнимой длины. Например, е = [].

3. Изотропные прямые (), направляющий вектор которых является изотропным вектором. Например, e = [0, +].

В пространстве 1R4 существует три типа двумерных плоскостей.

1. Евклидова плоскость R2, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости записывается в виде

, где .

Например, евклидова плоскость - плоскость . Для векторов этой плоскости , .

Тогда,

2. Псевдоевклидова плоскость1R2, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости записывается в виде , где .

Например, евклидовой плоскостью является плоскость . Для векторов этой плоскости, . Получим,

3. Полуевклидова плоскость, на которой существует базис, в котором скалярное произведение любых двух векторов этой плоскости принимает вид , где .

Например, полуоевклидова плоскость - плоскость . Для векторов этой плоскости

, .

Тогда получим,

т.к.

Псевдоевклидова плоскость по своим аффинным свойствам не отличается от евклидовой, однако метрические свойства этих плоскостей существенно различаются. Это видно, хотя бы на примере окружности, которую на псевдоевклидовой плоскости определим как совокупность всех точек, удаленных на одно и то же псевдоевклидово расстояние r от данной точки - центра.

Если центр совпадает с началом координат О(0,0), то по определению уравнение окружности имеет вид

.

Радиус окружности может быть вещественным (r=a), тогда .

Если радиус окружности мнимый, т.е. r=ia, то . В случае, когда радиус r=0, имеем .

Таким образом на существует три вида окружностей. На аффинной плоскости они представляют собой пару пересекающихся прямых - окружность нулевого радиуса - и две сопряженные гиперболы, для которых указанные прямые являются асимптотами. (Рис. 1.2)

В пространстве 1R4 существует три типа 3-плоскостей.

1. Евклидова 3-плоскость R3, на которой существует базис, в котором скалярное произведение принимает вид:

.

Например, евклидовой 3-плоскостью является плоскость Для векторов этой 3-плоскости , Тогда получим, ,)=

2. Плоскость 1R3, на которой существует базис, в котором скалярное произведение принимает вид:

.

Например, плоскостью 1R3 является плоскость Для векторов этой 3-плоскости , Получаем,

,)=

3. Плоскость , на которой существует базис, в котором скалярное произведение принимает вид: .

Например, плоскостью является плоскость Для векторов этой 3-плоскости , .

Получим:

Поскольку каждая 3-плоскость ортогональна некоторой прямой, то существует только 3 типа 3-плоскостей.

Определение 1.3. Ортогональным дополнением к векторному пространству L1R4 называется векторное пространство, образованное всеми векторами, ортогональными к пространству L.

Пример. Найдем множество векторов, ортогональных к вектору . Если вектор ортогонален , то . Отсюда,

=.

Таким образом, ортогональным дополнением к вектору является множество векторов . Эти векторы определяют 3-плоскость которое является 3-плоскостью вида 1R3. Следовательно, R11R3. Это означает, что к прямой R1 ортогональной является 3-плоскость типа1R3. Верно и обратное.

Аналогично найдем множество векторов ортогональных к вектору. Если вектор ортогонален , то . Отсюда,

=.

Множество векторов, ортогональных вектору , имеет вид и определяет 3-плоскость которое является 3-плосткостью вида R3. Следовательно, 1R1R3. Это означает, что к прямой 1R3 ортогональной является 3-плоскость типа R3. Верно и обратное.

Рассмотрим вектор () и найдем множество векторов ортогональных к данному вектору. Если вектор ортогонален (), то .

Получаем, что

=.

Отсюда, , а -- произвольные. - это множество векторов, ортогональных вектору () и определяет 3-плоскость которое является 3-плосткостью вида . Значит, . Это означает, что к прямой ортогональной является 3-плоскость типа . Верно и обратное.

Заметим, что .

Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида 1R2. Следовательно, R2 1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2).

Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которое является 2-плосткостью вида R2, Следовательно, R2 1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2). Верно и обратное.

Найдем множество векторов, ортогональных к векторамЕсли вектор ортогонален , то

Отсюда,

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида . Следовательно, .

Таким образом, получена теорема.

Теорема 1.1. В пространстве 1R4 существуют следующие типы прямых, плоскостей и 3-плоскостей:

- прямые: R1, 1R1,.

- 2-плоскости: R2, 1R2,.

- 3-плоскости: R3, 1R3,.