logo
Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

§2. Кривые в пространстве 1R4

В пространстве 1R4 выберем базис

,

где Точка M1R4, имеющая в репере R координаты (): M()R.

Определение 2.1. Кривой в пространстве 1R4 называется множество точек этого пространства, координаты которых задаются уравнениями:

(6)

Или в векторном виде . (7)

Определение 2.2. Функция, имеющая непрерывные производные до k-го порядка включительно на отрезке [a,b], называется k раз дифференцируемой функцией на этом отрезке.

Определение 2.3. Кривая называется дифференцируемой класса Сk, если функции (6), задающие параметрические уравнения, являются k раз дифференцируемыми функциями.

Пусть кривая является кривой класса C3. Рассмотрим на дифференцируемой кривой вектора:

.

Определение 2.4. Точка M, принадлежащая кривой , называется неособой, если в этой точке вектора , линейно независимы. В противном случае точка M кривой называется особой.

Определение 2.5. Прямая называется касательной к кривой в точке M, 2-плоскость называется соприкасающейся плоскостью кривой , 3-плоскость называется соприкасающейся 3-плоскостью кривой в точке M.

Очевидно, .

Теорема 2.1. Кривая имеет в каждой точке касательную и притом единственную.

Если r=r(t) - векторное уравнение кривой, то касательная в точке Р, соответствующей значению параметра t, имеет направление вектора r(t).

Теорема 2.2. Кривая имеет в каждой точке соприкасающуюся плоскость. При этом соприкасающаяся плоскость либо единственная, либо любая плоскость, содержащая касательную к кривой, является соприкасающейся.

Если r=r(t) - уравнение кривой , то соприкасающаяся плоскость в точке, соответствующей значению параметра t, параллельна векторам r(t) и r(t).

Теорема 2.3. Задание касательной, соприкасающейся плоскости и соприкасающейся 3-плоскости корректно, т.е. не зависит от параметризации кривой.

Для доказательства достаточно перейти к новому параметру и сравнить направляющие вектора.

Определение 2.5. Соприкасающийся флаг - это совокупность, состоящая из точки кривой, касательной к кривой в этой точке, соприкасающейся 2-плоскости к кривой в этой точке и соприкасающейся 3-плоскости к кривой в этой точке. [M, ], M .

Соприкасающийся флаг может быть следующих видов.

10. {M, R1, R2, R3}. Например,

20. {M, R1, 1R2, 1R3}. Например,

30. {M, R1, , 1R3}. Например,

40. {M, R1, , }. Например,

50. {M, 1R1, 1R2, 1R3}. Например,

60. {M, , , 1R3}. Например,

70. {M, , , }. Например,

80. {M, R1, R2, 1R3}. Например,

90. {M, R1, R2, }. Например,

100. {M, , 1R2, 1R3}. Например,

Более подробно в своей дипломной работе я рассмотрю кривые, имеющие соприкасающийся флаг вида 20.

Рассмотрим кривую с соприкасающимся флагом 20.

Построим в произвольной точке M кривой канонический репер {M, 1, 2, 3, 4}.

Введем на кривой естественную параметризацию s следующим образом:

(8)

Теорема 2.4. Для кривой : , заданной в естественной параметризации, получим

(9)

Доказательство.

.

Из (8) следует . Значит, и, следовательно,

, . (10)

Дифференцируем равенство (10): Отсюда,

Ч.т.д.

Вектор направлен по касательной в точке М: . Вектор выберем в соприкасающейся плоскости перпендикулярно :

Условие перпендикулярности к в соприкасающейся плоскости: Отсюда: .

Вектор выберем в соприкасающейся 3-плоскости перпендикулярно векторам и .

(11)

Найти и можно используя условия ортогональности:

Подставив и в формулу (8) получим вектор .

Вектор выберем в 1R4 перпендикулярно ,,.

В нашем случае векторы ,, - векторы действительной длины, а вектор - вектор мнимой длины.

Пусть кривая задана в естественной параметризации. Вектора ,, , канонического репера будут заданы тоже с помощью параметра s.

Рассмотрим векторы ,, . Эти векторы можно будет разложить по базису ,, :

(12)

Теорема 2.5. Производная вектора постоянной длины перпендикулярна этому вектору.

Доказательство.

Пусть

Ч.т.д.

Из теоремы 2.5. следует, что .

Домножим первое уравнение (12) скалярно на . Получим . Аналогично,

. (13)

Домножим первое уравнение (12) скалярно на , второе на , затем сложим их. (,)+(,)=+. Выражение =0.

Отсюда, = .

Аналогично, =, =, =, =,=.

Выберем , . При этом имеет действительную длину. Тогда

(14)

Исходя из (12) и (14), получим =. Следовательно, ==0.

.

Значит, раскладывается по векторам ,,, задающим . Значит, =0, а следовательно =0.

. Пусть k1(s).

Деривационные формулы запишутся в виде: