Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку

дипломная работа

2.1 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.28) - (1.31)

Будемо проводити наше дослідження в припущенні, що , , .

Нехай ми маємо систему (1.1), коефіцієнти якої визначаються відповідно до формул (1.28) - (1.31), тоді система (1.1) запишеться у вигляді:

(2.1)

Інтегральні криві в цьому випадку мають вигляд:

(2.2)

(2.3)

Знайдемо стани рівноваги системи (2.1). Дорівнявши праві частини системи нулю й виключивши змінну y, одержимо наступне рівняння для визначення абсцис станів рівноваги:

(2.4)

З (2.4) одержуємо, що

, , , .

Ординати крапок спокою мають вигляд:

, , , .

Отже, маємо крапки

, , , .

Досліджуємо поводження траєкторій на околицях станів рівноваги , , , .

Досліджуємо крапку .

Складемо характеристичне рівняння в крапці .

Звідси

, (2.5)

,

Отже, характеристичне рівняння прийме вид:

= =0.

,

Або

.

Характеристичними числами для крапки системи (2.1) будуть

.

Коріння - дійсні, різних знаків не залежно від параметра d. Отже, крапка - сідло.

Досліджуємо крапку

.

Складемо характеристичне рівняння в крапці

.

Згідно

рівностям (2.5) характеристичне рівняння прийме вид:

,

Або

.

Характеристичними числами для крапки системи (2.1) будуть

,

тобто

, .

Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d (0, то крапка - нестійкий вузол, якщо d (0, то крапка - стійкий вузол. Досліджуємо крапку .

Застосовуючи рівності (2.5), складемо характеристичне рівняння в крапці

:

Характеристичними числами для крапки

системи (2.1) будуть , тобто , . Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка - стійкий вузол, якщо d0, то крапка - нестійкий вузол.

Досліджуємо крапку

.

Складемо характеристичне рівняння в крапці

.

Застосовуючи рівності (2.5), одержимо:

,

Або

Характеристичними числами для крапки

системи (2.1) будуть

,

тобто

, .

Коріння - дійсні й різні знаки не залежно від параметра d. Виходить, крапка - сідло.

Досліджуємо нескінченно - вилучену частину площини наприкінці осі oy. Перетворення

[7]

переводить систему (2.1) у систему:

(2.6)

де .

Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку . Складемо характеристичне рівняння в крапці.

Одержимо, що

Коріння - дійсні й одного знака. Отже, крапка - стійкий вузол.

Досліджуємо нескінченно - вилучену частину площини поза кінцями осі oy перетворенням [7] Це перетворення систему (2.1) переводить у систему:

(2.7)

де .

Вивчимо нескінченно - вилучені крапки на осі U, тобто при z=0. Маємо:

Одержуємо, що . Отже, станів рівноваги поза кінцями осі oy немає.

Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 1.

Таблиця 1.

d

?

x=0

(-?; 0)

сідло

невуст. вузол

вуст. вузол

сідло

вуст. вузол

(0; +?)

сідло

вуст. вузол

невуст. вузол

сідло

вуст. вузол

Положення кривих (2.2), (2.3) і розташування щодо їхніх станів рівноваги при d (0 і d (0 дається відповідно мал.1 (а, б).

Поводження траєкторій системи в цілому при d (0 і d (0 дається мал.4 (а, б) додатка А: Поводження траєкторій системи (2.1).

Досліджуючи вид кривих (2), (2.3) і розташування щодо їхніх станів рівноваги, переконуємося, що система (2.1) не має граничних циклів, тому що Воробйов А.П. [5] довів, що для систем, праві частини яких є поліноми другого ступеня, граничний цикл може оточувати тільки крапку типу фокуса. З огляду на розташування станів рівноваги відносно кривих (1.3) і (1.13), що є інтегралами системи (2.1), характер стану, містимо, що для системи (2.1) не може існувати граничних циклів, що оточують кілька станів рівноваги.

а (d (0)

б (d (0)

Мал.1

Делись добром ;)