10 способов решения квадратных уравнений

контрольная работа

1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах2 + bх = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

(x/8)2 + 12 = x

Бхаскара пишет под видом:

х2 - 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:

х2 - 64х + 322 = -768 + 1024,

(х - 32)2 = 256,

х - 32 = ± 16,

х1 = 16, х2 = 48.

Делись добром ;)