logo
Застосування методу Монте-Карло для кратних інтегралів

2. Обчислення кратних інтегралів методом Монте-Карло

Нехай функція неперервна в обмеженій замкнутій області S і потрібно обчислити m-кратний інтеграл

. (1)

Геометрично число I являє собою (m+1)- мірний обєм прямого циліндроїда в просторі , побудованого на основі S і обмеженого зверху даною поверхнею

, де .

Перетворимо інтеграл (1) так, щоб нова область інтегрування повністю містилась усередині одиничного m-мірного куба. Нехай область S розміщена в m-мірному паралелепіпеді

. (2)

Зробимо заміну змінних

. (3)

Тоді, очевидно, m-мірний паралелепіпед (2) перетвориться в m-мірний одиничний куб (4)

а, отже, нова область інтегрування у, яка знаходиться за звичайними правилами, буде повністю розташована усередині цього куба.

Обчислюючи якобіан перетворення, будемо мати:

.

Таким чином, , (5)

де . Увівши позначення і , запишемо інтеграл (5) коротше в наступному виді: . (5/)

Укажемо спосіб обчислення інтеграла (5/) методом випадкових випробувань.

Вибираємо m рівномірно розподілених на відрізку [0, 1] послідовностей випадкових чисел:

Точки можна розглядати як випадкові. Вибравши досить велике N число точок , перевіряємо, які з них належать області у (перша категорія) і які не належать їй (друга категорія). Нехай

1. при i=1, 2, …, n (6)

2. при i=n+1, n+2, …,N (6/) (для зручності ми тут змінюємо нумерацію точок).

Зазначимо, що відносно границі Г області у варто заздалегідь домовитися, чи зараховуються граничні точки або частина їх до області у, чи не зараховуються до неї. У загальному випадку при гладкій границі Г це не має істотного значення в окремих випадках потрібно вирішувати питання з урахуванням конкретної ситуації.

Узявши досить велике число n точок , приблизно можна покласти: ; звідси шуканий інтеграл виражається формулою

де під у розуміється m-мірний обєм області інтегрування у. Якщо обчислити у важко, то можна прийняти: , звідси . В окремому випадку, коли у є одиничний куб, перевірка стає зайвою, тобто n=N і ми маємо просто

.