logo
История возникновения и развития методов реконструкции математических моделей динамических систем по порождаемому временному ряду

§ 1. Возникновение и развитие теории динамических систем

Первая линия развития, которая вела к появлению теории динамических систем, связана с небесной механикой. Основоположниками классической механики принято считать Исаака Ньютона, Жозефа Луи Лагранжа, Пьера Симона Лапласа, Уильяма Гамильтона. Результатом их деятельности стало формирование представления о том, что сейчас называют гамильтоновой или консервативной динамической системой. Проблема трёх тел в небесной динамике, - первая задача, анализируя которую исследователи столкнулись с возникновением сложной динамики и хаоса. Впервые об этом написал Анри Пуанкаре. Результатом изучения системы трёх тел стало развитие теории возмущений.

С развитием компьютеров возможности изучения и наглядного представления сложной динамики расширились. Одним из первых примеров компьютерного исследования сложной динамики стала работа французских астрофизиков, рассмотревших модель движения звезды через галактический диск.

Значительный прогресс в понимании соотношения между квазипериодической динамикой и хаосом связан с теорией, разработанной в 50-60-х годах А.Н. Колмогоровым и В.И. Арнольд, а также американцем Ю. Мозером. В качественном отношении большое значение получили работы Б.В. Чирикова и Г.М. Заславского.

Вторая линия развития связана со статической физикой и формированием эргодической теории. Как известно, состоятельное описание в статической физике достигается только в рамках квантовой теории. Однако, много важного было сделано в предположении, что на фундаментальном уровне законы движения микрочастиц, из которых построены физические системы, подчиняются классической гамильтоновой механике. Основоположники статистической физики Д.У. Гиббс и Л. Больцман рассматривали фазовое пространство гамильтоновых систем, образованных совокупностью большого числа микрочастиц. В силу закона сохранения энергии, предоставленная сама себе система должна оставаться всё время на некоторой гиперповерхности в этом пространстве, задаваемой условием постоянства энергии. Больцман ввёл эргодическую гипотезу - предположение о том, что имеется по существу только одна фазовая траектория, проходящая через все точки эргодической поверхности. В 1913 году было доказано, что такое невозможно. Исправленная версия (П. Эренфест) состоит в том, что фазовая траектория с течением времени должна проходить сколь угодно близко от любой точки эргодической поверхности. Результатом стало формирование отдельной математической дисциплины - эргодической теории или метрической теории динамических систем.

Появление компьютеров позволило в начале 50-х годов Ферми, Паста и Уламу предпринять попытку пронаблюдать в вычислительном эксперименте процесс установления термодинамического равновесия в цепочке связанных нелинейных осцилляторов. Результат оказался совершенно неожиданным: вместо релаксации к равновесию наблюдался квазипериодический процесс. Эта работа показала, что проблема значительно сложнее, чем виделась раньше и дала тем самым толчок исследованиям, приведшим впоследствии к представлению о распределённых системах, а также к понятию солитона. Как выяснилось, свойство эргодичности само по себе не является ни необходимым, ни достаточным для желаемого обоснования статистической физики. По настоящему существенным является неустойчивость фазовых траекторий системы по отношению к малым возмущениям начальных условий и связанное с этим более сильное, чем эргодичность, свойство перемешивания. Одним из первых эту идею разработал Н. С. Крылов (1917-1947).

Количественная характеристика неустойчивости траекторий известна как ляпуновский характеристический показатель - величина, введённая русским математиком А.М. Ляпуновым (1857-1918). В 1968 г. советский математик В.И. Оселедец опубликовал важнейший результат - так называемую мультипликативную эргодическую теорему, которая позволяет говорить о ляпуновских показателях, определённых не для одной фазовой траектории, а для множества траекторий.

Были введены и другие характеристики, позволяющие различать простую и сложную динамику, - динамическая энтропия, известная как энтропия Колмогорова-Синая (1959) и топологическая энтропия (1965).

(1917{1947)

Третья линия развития связана с радиотехникой, электроникой, теорией автоматического регулирования. Основоположником этого направления развития теории динамических систем был Б. Ван-дер-Поль. С этим именем связан генератор и осциллятор Ван-дер-Поля - классическая модель нелинейной системы, демонстрирующей периодические автоколебания. Около 1927 г. Ван-дер-Поль и Ван-дер-Марк исследовали динамику такого генератора под периодическим внешним воздействием. Режим работы устройства контролировался по звуку работы в наушниках. Исследова-тели отметили явление синхронизации при определенных раци-ональных соотношениях частоты воздействия и собственной ча-стоты и шумоподобные колебания при переходах между областями захвата. Возможно, это первое документально зарегистрированное экспериментальное наблюдение хаоса.

Работа Ван-дер-Поля и Ван-дер-Марка повлияла на работу Картрайт и Литтлвуда (1945). В этой работе, посвященной математическому исследованию уравнения автоге-нератора под периодическим внешним воздействием, была обна-ружена необычайная сложность динамики, в частности, наличие у системы (при достаточно большой амплитуде внешней силы) бесконечного числа неустойчивых периодических орбит. Эта ра-бота впоследствии оказала влияние на математиков, создававших основы математической теории сложной динамики и хаоса.

В России в 20-е годы в Московском университете сформиро-валась сильная научная школа Л.И.Мандельштама (1879-1944). Интересы этой школы охватывали, в частности, радиофизику, оп-тику, колебательные процессы в системах различной природы. Мандельштам первым пришел к пониманию возможности такой дисциплины, как теория нелинейных колебаний, -- до этого по-лагали, что нелинейные явления должны изучаться для каждой конкретной системы отдельно. В конце 20-х годов ученик Ман-дельштама А.А. Андронов (1901-1952) установил, что адекватным математическим образом периодических автоколебаний являются предельные циклы, введенные Пуанкаре в его качественной тео-рии дифференциальных уравнений. Мандельштам сразу понял важность этого достижения и настоял на немедленной публикации результата. Андронов привлек также для анализа автоколебатель-ных систем созданный А.М.Ляпуновым аппарат теории устой-чивости. Одно из важных достижений -- исследование момента возникновения автоколебаний при изменении параметров, ситу-ации, которую теперь называют бифуркацией Андронова-Хопфа. С 1931 г. Андронов работает в Нижнем Новгороде (Горьком), где вокруг него формируется крупная научная школа в области теории колебаний. В 1937 г. выходит классическая книга А. А. Андронова, А.А.Витта и С.Э.Хайкина «Теория колебаний». Один из соавто-ров книги - Витт оказался жертвой репрессий и погиб в лагерях, в издании книги 1937 г. его имя было исключено и восстановлено только в последующих изданиях.

Одним из важных достижений развивающейся теории нели-нейных колебаний стало формирование Андроновым и Понтрягиным представления о грубых или структурно-устойчивых систе-мах. Представим себе пространство, точки которого изображают динамические системы. Система грубая, если около соответству-ющей ей точки пространства систем можно указать такую окрест-ность, что в ней будут располагаться только системы с топологи-чески эквивалентным устройством фазового пространства. В про-странстве параметров грубые системы занимают целые области. Эти области разграничены поверхностями, где располагаются не-грубые системы коразмерности один. На этих поверхностях могут располагаться линии коразмерности два и т. д.

Исследовательская программа нелинейной теории колебаний по Андронову и Понтрягину и состоит в выделении и изучении грубых ситуаций, а затем негрубых в порядке возрастающей ко-размерности. Что касается негрубых ситуаций, то они составляют предмет теории бифуркаций -- глубокой и хорошо развитой математической дисциплины, одного из краеугольных камней нели-нейной динамики.

С 1970 г. с интервалом в 2 года в Горьком организуются школы-семинары по нелинейным колебаниям и волнам, в которых участ-вуют ведущие советские ученые. Этих школ состоялось 9, и они во многом определили распространение в нашей стране идей не-линейной динамики и динамического хаоса. Еще одна школа, восстанавливающая прерванную традицию, уже международная, состоялась в 1995 г. В формировании, распространении и популя-ризации в России представлений о хаотической динамике большую роль сыграли А. В. Гапонов-Грехов, Ю.И.Неймарк, М.И.Рабино-вич, Л. П. Шильников. В 1979 г. Кияшко, Пиковский и Рабинович предложили, по-видимому, первый простой радиотехнический ав-тогенератор, в котором целенаправленно был реализован режим хаотических автоколебаний.

Четвертая линия развития связана с гидродинамикой и про-блемой турбулентности. В 1883 г. была опубликована работа английского физика Осборна Рейнольдса (1842-1912) «Экспериментальное исследование об-стоятельств, которые определяют, будет ли движение воды прямо-линейным или волнистым, и о законе сопротивления в параллель-ных каналах». В зависимости от безразмерного параметра, из-вестного теперь как число Рейнольдса), движение воды в трубке было ламинарным или турбулентным. Хотя основные уравнения, описывающие динамику вязкой жидкости -- уравнения Навье-Стокса, уже были известны, причины возникновения турбулент-ности оставались загадкой. С тех пор вопрос о природе турбулент-ности стоял перед наукой, приобретая со временем все большую остроту. Около 1920 г. английский физик Л.Ричардсон развил качественные представления о том, что в турбулентном течении имеется перенос энергии от крупных ко все более и более мел-ким завихрениям, пока энергия не диссипирует из-за вязкости в малых масштабах. В 1941 г. была предложена теория турбулент-ности Колмогорова-Обухова. Анализ основывался на предположе-нии, что при больших числах Рейнольдса турбулентное состоя-ние можно считать локально однородным и изотропным в стати-стическом смысле, и о том, что имеет место каскадная передача энергии от крупных пространственных масштабов к мелким в так называемом «инерционном интервале» -- области масштабов, где вязкость несущественна. Замечательно простая и глубокая теория приводила ко вполне определенному теоретическому предска-занию -- распределение энергии по спектру должно быть пропор-ционально /г~53, где к - волновое число («закон пяти третей»). К настоящему времени получены экспериментальные данные, хо-рошо согласующиеся с этим законом, но осознана также необхо-димость внесения уточнений в теорию.

Другое направление в попытках понять природу турбулентно-сти состояло в поисках ответа на вопрос -- как возникает турбу-лентность, если постепенно увеличивать число Рейнольдса, начав от малых значений, когда течение заведомо ламинарное. В 1944 г. была опубликована статья советского физика Л.Д.Ландау (1908-- 1968) «К проблеме турбулентности». В этой замечательной для своего времени статье Ландау предположил, что турбулентность возникает в результате большого числа (каскада) последователь-ных бифуркаций, каждая из которых состоит в появлении ко-лебаний с новой частотой. Вновь возникающие частоты в ти-пичном случае находятся в иррациональном соотношении с ранее возникшими частотами. Аналогичные представления развивал несколько позже немецкий математик Э.Хопф (1902-1983; работа «Математический пример, демонстрирующий особенности турбу-лентности» опубликована в 1948). Поэтому данную картину воз-никновения турбулентности называют сценарием Ландау-Хопфа. Подчеркнем, что этим работам предшествовало формирование пред-ставлений об автоколебаниях, предельных циклах и бифуркациях в радиофизике и теории колебаний.

В 1963 г. американский метеоролог Э.Лоренц опубликовал статью «Детерминированное непериодическое течение», в которой обсуждались результаты численного интегрирования с помощью компьютера системы трех обыкновенных дифференциальных урав-нений, моделирующей динамику жидкости при конвекции в по-догреваемом снизу слое. Будучи хорошо образованным матема-тически, Лоренц подверг полученные результаты тщательному и глубокому обсуждению, акцентировав внимание на взаимосвязи между наблюдаемой сложной динамикой и присущей системе не-устойчивостью фазовых траекторий. Позднее это свойство хаоти-ческой динамики пропагандировалось им под названием «эффект бабочки»: в приложении к метеорологии взмах крыльев бабочки может через достаточное время повлечь суще-ственное изменение погоды где-то совсем в другом месте. При-мерно в то же самое время А. Н. Ораевский с соавторами также по-лучили непериодические решения для аналогичных уравнений в теории одномодового лазера. Как работа Лоренца, опубликованная в метеорологическом журнале, так и работа Ораевского не были своевременно замечены и оценены.

В 1971 г., основываясь на достигнутом к этому времени про-движении в математических исследованиях, Д.Рюэль и Ф. Такенсвыступили с работой «О природе турбулентности». Подвергнув кри-тике теорию Ландау, они аргументировали, что уже после включе-ния в игру относительно небольшого числа частот (трех или четы-рех в зависимости от некоторых математических деталей) дина-мика может стать турбулентной и, в частности, демонстрировать характерный для случайного процесса сплошной спектр. Это свя-зывалось с появлением в фазовом пространстве «странного аттрак-тора» -- ключевой термин, введение которого определило истори-ческое значение работы Рюэля и Такенса. Подчеркивалось нали-чие неустойчивости фазовых траекторий на странном аттракторе и его нетривиальная геометрическая структура -- он представлял собой то, что стали называть фрактальным множеством или про-сто фракталом.

С точки зрения интерпретации результатов, работа Рюэля и Такенса также оказалась уязвимой для критики. Многие вопросы, которые возникают в связи с предложенной ими карти-ной перехода к турбулентности, до сих пор остаются открытыми. Надо сказать, что аргументация и в работе Ландау, и в работе Рюэля и Такенса носила столь общий характер, что имела рав-ное отношение как к возникновению турбулентности, так и к воз-никновению сложной динамики в диссипативных системах другой физической природы. Дальнейшее понимание возможных типов перехода произошло благодаря еще одной линии развития.

Попытки математического описания биологических проблем динамики популяций восходят к Томасу Мальтусу (1766-1834), ав-тору нашумевшей концепции о том, что численность людей возра-стает в геометрической прогрессии, а средства поддержания жизни лишь в арифметической. Поэтому численность населения должна регулироваться войнами, эпидемиями и пр. Марксисты, как из-вестно, заклеймили эту теорию как человеконенавистническую. Не входя в полемику, заметим, что в отсутствие факторов, сдер-живающих рост населения, изменение численности популяции из года в год «по Мальтусу» можно описать как хп+ = Rxn, где R -- параметр, определяющий условия жизни популяции. Ввести сдер-живающий фактор можно, если добавить в уравнение нелинейный, например, квадратичный член: жп+1 = R(xn -- x2n). Полученное соотношение называют логистическим отображением и оно дей-ствительно неплохо описывает, по крайней мере, с качественной стороны, динамику некоторых биологических популяций.

Интересный результат, проливающий свет на возможность сложной динамики в логистическом отображении, был получен в конце 40-х годов в работе американских математиков Станислава Улама (1909-1984) и Джона фон Неймана. Они показали, что для случая R = 4 это отображение путем замены переменных сводится к форме, допускающей тривиальный анализ, причем оказывается, что выбором начальной точки х можно реализовать любую на-перед заданную последовательность знаков величины х -- хтах.

В 1975 г. американские математики Ли и Йорке опубликовали работу «Период три означает хаос». Речь шла о том, что если при частном значении параметра логистическое или другое одно-мерное отображение вида хп+ = f(xn) имеет цикл периода три, то оно имеет бесконечное множество циклов всех прочих перио-дов. Эта работа привлекла большое внимание, и стоит отметить, что именно в ней в контексте нелинейной динамики впервые по-явился термин «хаос», ставший впоследствии общепринятым обо-значением всей области деятельности, о которой мы ведем речь. Только через несколько лет на Западе стало широко известно, что еще в 1964 г. советский математик А. Н. Шарковский опубликовал гораздо более содержательную теорему, устанавливающую самые общие закономерности сосуществования циклов различного пери-ода в одномерных непрерывных отображениях.

К середине 70-х годов было уже хорошо известно, что при увеличении параметра в логистическом отображении имеет место последовательность бифуркаций удвоения периода. Соответству-ющие компьютерные результаты очень наглядно были предста-влены, например, в работе Роберта Мэя (1976). В это время, занимаясь исследованием удвоений периода с помощью карман-ного калькулятора, американский физик Митчел Фейгенбаум, ра-ботавший в Лос-Аламосской национальной лаборатории, обнару-жил, что точки бифуркаций удвоения периода накапливались к определенному пределу - порогу возникновения хаоса по закону геометрической прогрессии с показателем 4,669... Этот показатель оказался универсальным, т. е. возникал и в других отображениях, и, как затем выяснилось, в нелинейных диссипативных системах самого разного вида.

Используя аппарат, аналогичный развитому ранее в теории фазовых переходов, - метод ренормализационной группы, Фейгенбаум построил замечательную теорию, объясняю-щую универсальность удвоений периода (1978-1979). Теория эта выглядела слишком формально, с точки зрения физи-ков, и слишком нестрого, с точки зрения математиков, так что Фейгенбауму далеко не сразу удалось опубликовать статью с из-ложением своих результатов. Эта задержка отчасти компенсиро-валась тем, что Фейгенбаум активно рассказывал о своей работе на конференциях и семинарах.

В дальнейшем переход к хаосу через удвоения периода, демонстрирующий обнаруженные свой-ства универсальности, наблюдался в огромном количестве нели-нейных систем различной физической природы и в их моделях. Одна из первых очень аккуратных работ - эксперимент по кон-векции в жидком гелии (1979). Работа Фейгенбаума стимулировала также изучение и ренормгрупповое описание [10].