logo
Інтеграл Стілтьєса

§6. Обчислення інтегралів Стілтьєса

Доведемо наступну теорему:

1. Якщо функція f(x) інтегрована в сенсі Рімана на проміжку [a, b], a g(x) представлена інтегралом

де функція абсолютно інтегровна в [а,b], то

(11)

Існування інтеграла Стілтьєса при зроблених припущеннях уже було доведено вище.

Залишається лише зясувати рівність (11).

Без зменшення загальності можна припустити, що функція додатна.

Складемо суму Стілтьєса

Так як, з іншого боку, можна написати

то будемо мати

Очевидно, для буде , де означає коливання функції f(x) на проміжку [xі, xі+1]. Звідси витікає така оцінка записаної вище різниці:

Нам відомо, що при остання сума прямує до 0, з чого слідує, що

,

що і доводить формулу (11).

2. При тих самих припущеннях стосовно функції f(x) припустимо, що функція g(x) неперервна на всьому проміжку [а, b] і має в ньому, за виключенням лише скінченої кількості точок, похідну g(x), яка на [а, b] абсолютно інтегрована. Тоді

(12)

Звертаючись до випадків, коли функція g(x) є розривною розглянемо спочатку «стандартну» розривну функцію р(х), яка визначається рівностями

Вона має розрив першого роду -- стрибок -- у точці х= 0 зправа, причому величина стрибка р(+0) - р(0)) дорівнює 1; в точці х =0 зліва і в решті точок функція p(x) неперервна. Функція p(x - c) буде мати такий самий розрив у точці x=c зправа; навпаки, p(с - x) буде мати подібний розрив у точці x=c зліва, причому величина стрибка дорівнює - 1.

Припустимо, що функція f(x) неперервна в точці х = с, і обчислимо інтеграл , де (при інтеграл рівний нулю).

Складемо суму Стілтьєса:

.

Нехай точка потрапляє, скажімо в -ий проміжок, так що . Тоді , а при , очевидно . Таким чином, уся сума зводиться до одного доданку . Нехай тепер . По неперервності . Виходячи з цього, існує (при )

(13)

Аналогічно можна упевнитися в тому, що (при )

(14)

(при цей інтеграл перетворюється на нуль).

Тепер ми можемо довести дещо узагальнену на відміну від 2, а саме відмовимося від вимоги неперервності функції :

3. Нехай функція f(x) на проміжку неперервна,a g(x) має на цьому проміжку, виключаючи хіба лише скінчене число точок, похідну яка абсолютно інтегровна на . При цьому нехай функція g(x) у скінченому числі точок

має розрив першого роду. Тоді існує інтеграл Стілтъєса, який виражається формулою

. (15)

Характерна тут наявність позаінтегральної суми, де фігурують скачки функції g(x) в точках або -- односторонні. (Якщо на будь-якій з цих функцій стрибка немає, то відповідний доданок суми перетворюється на нуль).

Для спрощення запису введемо позначення для стрибків функції g(x) зправа и зліва:

,

;

очевидно, для , .

Складемо допоміжну функцію:

,

Яка як би вбирає у себе усі розриви функції g(x), так що різниця , як ми зараз встановимо, виявляється вже неперервною.

Для значень відмінних від усіх , неперервність функції не викликає сумнівів, бо для цих значень неперервні обидві функції и . Доведемо тепер неперервність у точці зправа. Усі доданки суми , окрім члена , неперервну при зправа, тому достатньо вивчити поведінку виразу . При воно має значення ; але така ж і його границя при :

.

Аналогічно перевіряється ф неперервність функції в точці зліва.

Далі, якщо взяти точку х (відмінну від усіх ), в якій функція має похідну, то поблизу цієї точки зберігає постійне значення, виходячи з цього, у ній і функція має похідну, причому .

Для неперервної функції , за попередньою теоремою, існує інтеграл Стілтьєса .

Так само легко обрахувати і інтеграл

.

Додаючи почленно ці дві рівності, ми і прийдемо до рівності (15); існування інтеграла Стілтьєса від по функції встановлюється попутно. [5]