logo
Классы Фиттинга конечных групп

Введение

Абстрактная алгебра изучает множества с заданными на них алгебраическими операциями и отношениями. С древнейших времён математики имели дело с конкретными множествами (числа, векторы, матрицы и т.д.) не изучая глубоко абстрактные множества и их свойства.

Возникновение понятия группы стало новым витком в алгебре и началом абстрактной алгебры как таковой. Истоки понятия группы обнаруживаются в нескольких дисциплинах, главная из которых - теория решений алгебраических уравнений в радикалах. В 1771 г. французские математики Ж. Лагранж и А. Вандермонд впервые для нужд этой теории применили подстановки. Затем, в ряде работ итальянского математика П. Руффини (1799 г. и позднее), посвященных доказательству неразрешимости уравнения пятой степени в радикалах, систематически используется замкнутость множества подстановок относительно их композиции и по существу описаны подгруппы группы всех подстановок пяти символов. Глубокие связи между свойствами группы подстановок и свойствами уравнений были указаны норвежским математиком Н. Абелем (1824) и французским математиком Э. Галуа (1830). Галуа принадлежат и конкретные достижения в теории групп: открытие роли нормальных подгрупп в связи с задачей о разрешимости уравнений в радикалах, установление свойства простоты знакопеременных групп степени nі5 и др.; он же ввёл термин "группа", хотя и не дал строгого определения. Важную роль в систематизации и развитии теории групп сыграл трактат французского математика К. Жордана о группе подстановок (1870).

Идея группы независимо возникла и в геометрии, когда в середине 19 в. на смену единой античной геометрии пришли многочисленные "геометрии" и остро встал вопрос об установлении связей и родства между ними. Выход из создавшегося положения был намечен исследованиями по проективной геометрии, посвященными изучению поведения фигур при различных преобразованиях. Постепенно интерес в этих исследованиях перешёл на изучение самих преобразований и поиск их классификации. Таким "изучением геометрического родства" много занимался немецкий математик А. Мёбиус. Заключительным этапом на этом пути явилась "Эрлангенская программа" немецкого математика Ф. Клейна (1872), положившая в основу классификации геометрий понятие группы преобразований: каждая геометрия определена некоторой группой преобразований пространства, и только те свойства фигур принадлежат к данной геометрии, которые инвариантны относительно преобразований соответствующей группы.

Третий источник понятия группа - теория чисел. Уже Л. Эйлер, изучая "вычеты, остающиеся при делении степеней", по существу пользовался сравнениями и разбиениями на классы вычетов, что на теоретико-групповом языке означает разложение группы на смежные классы по подгруппе. К. Гаусс в "Арифметических исследованиях" (1801), занимаясь уравнением деления круга, фактически определил подгруппы его группы Галуа. Там же, изучая "композицию двоичных квадратичных форм", Гаусс по существу доказывает, что классы эквивалентных форм образуют относительно композиции конечную абелеву группу. Развивая эти идеи, немецкий математик Л. Кронекер (1870) вплотную подошёл к основной теореме о конечных абелевых группах, хотя и не сформулировал её явно.

Осознание в конце 19 в. принципиального единства теоретико-групповых форм мышления, существовавших к тому времени независимо в разных областях математики, привело к выработке современного абстрактного понятия группы. Уже в 1895 г. Ли определял группу как совокупность преобразований, замкнутую относительно их композиции, удовлетворяющей некоторым условиям. Изучение групп без предположения их конечности и без каких бы то ни было предположений о природе элементов впервые оформилось в самостоятельную область математики с выходом книги О. Ю. Шмидта "Абстрактная теория групп" (1916).

Во второй половине XX века (в основном, между 1955 и 1983 гг.) была проведена огромная работа по классификации всех конечных простых групп.

Новым витком развития алгебры стало изучения классов групп, т.е. множеств, элементами которых являлись уже не отдельные элементы, а группы.

Абстрактная алгебра довольно долго использовала в теории конечных групп такие классы групп как формации. В 1963 г. работа Гашюца дала сильный толчок в направлении изучения формаций. Возникла отдельная теория формаций. Значительные результаты были получены уже в первые годы использования этой теории.

Классы Фиттинга впервые упоминаются в статье Fischer B. Klassen konjugirter Untergruppen in endlichen auflosbaren Gruppen, Habilitationsschrift, Universitat Frankfurt am Main в 1966 году. В статье Fischer, B., Gaschutz, W. und Hartly, B. Injektoren endlicher auflosbarer Gruppen (Math. Z. 102, 1967 год) впервые рассматриваются классы Фиттинга конечных групп.

В первой статье (1966) классы Фиттинга были введены двойственным образом к формациям, классам групп, замкнутым относительно фактор-групп и относительно подпрямого произведения. Классы Фиттинга замкнуты относительно нормальных подгрупп и прямого произведения нормальных X-подгрупп.

Двойственность заключалась в том, что определение классов Фиттинга получалось из определения формаций заменой фактор-групп на нормальные подгруппы. В силу двойственности формацию называют корадикальным классом (класс Фиттинга - радикальный класс). Двойственность наблюдается и в теории F-проекторов (формации) и F-инъекторов (классы Фиттинга).

В настоящий момент теория классов Фиттинга насчитывает всего 44 года, за которые были получены довольно значительные результаты. Данная теория является «молодой», актуальной для современных алгебраистов и хранит в себе ещё много нераскрытых фактов и неизученных вопросов.

Цель данной работы в том, чтобы привести последовательное и доступное изложение основной теории по классам Фиттинга и рассмотреть некоторые практические примеры. Работа может быть полезной для студентов математических факультетов при написании курсовых и дипломных работ, учителям математики при разработке факультативных занятий и элективных курсов.