Конгруэнции Фраттини универсальных алгебр

курсовая работа

Введение

Одно из направлений исследований самых абстрактных алгебраических систем, в частности, универсальных алгебр, связано с изучением, определенным образом выделенных подсистем таких систем. Например, в группах - это силовские подгруппы, подгруппа Фраттини, подгруппа Фиттинга, в алгебрах Ли --- это подалгебра Картана, Фраттини и т.д. Разработка новых методов исследований мультиколец, универсальных алгебр, нашедших свое отображение в книге Л. А. Шеметкова и А. Н. Скибы ``Формации алгебраических систем(1), дает мощный импульс в реализации этого направленияи в универсальных алгебрах. В этой курсовой работе решается задача, связанная с изучением свойств подалгебр Фраттини и конгруэнции Фраттини универсальных алгебр, принадлежащих некоторому фиксированному мальцевскому многообразию. В частности, получены новые результаты, указывающие на связь подалгебры Фраттини с фраттиниевой конгруэнцией (теоремы (4)и(5)). Установлено одно свойство подалгебры Фраттини нильпотентной алгебры (теорема(2)). Как следствие, из полученных результатов следуют аналогичные результаты теории групп и мультиколец.

Перейдем к подробному изложению результатов курсовой работы, состоящей из введения, трех параграфов и списка литературы, состоящего из пяти наименований.

1 носит вспомагательный характер. Здесь приведены все необходимые определения, обозначения и используемые в дальнейшем результаты.

2 носит реферативный характер. Здесь приводятся с доказательствами результаты работ , касающееся свойств централизаторов конгруэнций.

3 является основным. На основе введенного здесь понятия --- конгруэнции Фраттини, устанавливаются некотоые свойства подалгебры Фраттини универсальной алгебры. В частности, доказывается, что подалгебра Фраттини нильпотентной алгебры нормальна в (теорема(3)).

1. Основные определения и используемые результаты

Определение 1.1 Пусть --- некоторое непустое множество и пусть , отображение -ой декартовой степени в себя, тогда называют -арной алгебраической операцией.

Определение 1.2 Универсальной алгеброй называют систему состоящую из некоторого множества с заданной на нем некоторой совокупностью операций .

Определение 1.3 Пусть --- некоторая универсальная алгебра и (), тогда называют подалгеброй универсальной алгебры , если замкнута относительно операций из .

* Для любой операции , где и .

* Для любой операции элемент фиксируемый этой операцией в принадлежит .

Определение 1.4 Всякое подмножество называется бинарным отношением на .

Определение 1.5 Бинарное отношение называется эквивалентностью, если оно:

* рефлексивно

* транзитивно и

* симметрично

Определение 1.6 Пусть некоторая эквивалентность на , тогда через обозначают множество . Такое множество называют класс разбиения по эквивалентности содержащий элемент . Множество всех таких классов разбиения обозначают через и называют фактормножеством множества по эквивалентности .

Определим -арную операцию на фактормножестве следующим образом:

Определение 1.7 Эквивалентность на алгебре называется ее конгруэнцией на , если выполняется следующее условие:

Для любой операции для любых элементов таких, что имеет место .

Определение 1.8 Если и --- конгруэнции на алгебре , , то конгруэнцию на алгебре назовем фактором на .

тогда и только тогда, когда .

или или 1 --- соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .

Лемма 1.1 (Цорна). Если любая цепь частично упорядоченного множества содержит максимальные элементы, то и само множество содержит максимальные элементы.

Определение 1.9 Пусть --- бинарное отношение на множестве . Это отношение называют частичным порядком на , если оно рефлексивно, транзитивно, антисимметрично.

Определение 1.10 Множество с заданным на нем частичным порядком называют частично упорядоченным множеством.

Теорема Мальцев А.И. Конгруэнции на универсальной алгебре перестановочны тогда и только тогда, когда существует такой тернарный оператор , что для любых элементов выполняется равенство . В этом случае оператор называется мальцевским.

Определение 1.11 Алгебра называется нильпотентной, если существует такой ряд конгруэнций , называемый центральным, что для любого .

Определение 1.12 Подалгебра алгебры называется собственной, если она отлична от самой алгебры .

Определение 1.13 Подалгебра универсальной алгебры называется нормальной в , если является смежным классом по некоторой конгруэнции алгебры .

Определение 1.14 Пусть и --- универсальные алгебры с одной и той же сигнатурой, отображение называется гомоморфизмом, если

1) и имеет место ;

2) , где и элементы фиксируемой операцией в алгебрах и соответственно.

Определение 1.15 Гомоморфизм называется изоморфизмом между и , если обратное к нему соответствие также является гомоморфизмом.

Теорема Первая теорема об изоморфизмах Пусть - гомоморфизм, --- конгруэнция, тогда .

Теорема Вторая теорема об изоморфизмах Пусть --- есть -алгебра, --- подалгебра алгебры и --- конгруэнция на . Тогда является подалгеброй алгебры , --- конгруэнцией на и .

Теорема Третья теорема об изоморфизмах Пусть --- есть -алгебра и и --- такие конгруэнции на , что . Тогда существует такой единственный гомоморфизм , что . Если , то является конгруэнцией на и индуцирует такой изоморфизм .

Делись добром ;)