logo
Абелевы универсальные алгебры

2. Свойства централизаторов конгруэнции универсальных алгебр

Напомним, что класс алгебр сигнатуры называется многообразием, если существует множество тождеств сигнатуры такое, что алгебра сигнатуры принадлежит классу тогда и только тогда, когда в ней выполняются все тождества из множества .

Многообразие называется мальцевским, если оно состоит из алгебр, в которых все конгруэнции перестановочны.

Все алгебры считаются принадлежащими некоторому фиксированному мальцевcкому многообразию. Используются стандартные обозначения и определения из[2].

В данной работе конгруэнции произвольной алгебры будем обозначать греческими буквами.

Если - конгруэнция на алгебре , то

смежный класс алгебры по конгруэнции . или - диагональ алгебры .

Для произвольных конгруэнции и на алгебре будем обозначать множество всех конгруэнции на алгебре таких, что

тогда и только тогда, когда

Так как , то множество не пусто.

Следующее определение дается в работе[2].

Определение 2.1. Пусть и - конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:

1) из

всегда следует

2) для любого элемента

всегда выполняется

3) если

то

Под термином «алгебра» в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие .

Следующие свойства централизуемости, полученные Смитом[3], сформулируем в виде леммы.

Лемма 2.1. Пусть . Тогда:

1) существует единственная конгруэнция , удовлетворяющая определению 2.1;

2) ;

3) если

то

Из леммы 2.1. и леммы Цорна следует, что для произвольной конгруэнции на алгебре всегда существует наибольшая конгруэнция, централизующая . Она называется централизатором конгруэнции в и обозначается .

В частности, если , то централизатор в будем обозначать .

Лемма 2.2. Пусть , - конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

1) ;

2) , где ;

3) если выполняется одно из следующих отношений:

4) из всегда следует

Доказательство:

1) Очевидно, что - конгруэнция на , удовлетворяющая определению 2.1. В силу пункта 1) леммы 2.1. и .

2) - конгруэнция на , удовлетворяющая определению 2.1. Значит

3) Пусть . Тогда

Применим к последним трем соотношениям мальцевский оператор такой, что

Тогда получим

т.е.

Аналогичным образом показываются остальные случаи из пункта 3).

4) Пусть

Тогда справедливы следующие соотношения:

Следовательно,

где - мальцевский оператор.

Тогда

то есть .

Так как

то .

Таким образом . Лемма доказана.

Следующий результат оказывается полезным при доказательстве последующих результатов.

Лемма. 2.3. Любая подалгебра алгебры , содержащая диагональ , является конгруэнцией на алгебре .

Доказательство:

Пусть

Тогда из

следует, что

Аналогичным образом из

получаем, что

Итак, симметрично и транзитивно. Лемма доказана.

Доказательство следующего результата работы [1] содержит пробел, поэтому докажем его.

Лемма 2.4. Пусть . Тогда для любой конгруэнции на алгебре .

Доказательство:

Обозначим и определим на алгебре бинарное отношение следующим образом:

тогда и только тогда, когда

где

Используя лемму 2.3, нетрудно показать, что - конгруэнция на алгебре , причем

Пусть

то есть

Тогда

и, значит

Пусть, наконец, имеет место

Тогда справедливы следующие соотношения:

применяя мальцевчкий оператор к этим трем соотношениям, получаем

Из леммы 2.2 следует, что

Так как

то

Значит,

Но , следовательно, .

Итак,

и удовлетворяет определению 2.1. Лемма доказана.

Лемма 2.5. Пусть , - конгруэнции на алгебре , и - изоморфизм, определенный на .

Тогда для любого элемента отображение определяет изоморфизм алгебры на алгебру , при котором .

В частности, .

Доказательство.

Очевидно, что - изоморфизм алгебры на алгебру , при котором конгруэнции , изоморфны соответственно конгруэнциям и .

Так как

то определена конгруэнция

удовлетворяющая определению 2.1.

Изоморфизм алгебры на алгебру индуцирует в свою очередь изоморфизм алгебры на алгебру такой, что

для любых элементов и , принадлежащих . Но тогда легко проверить, что - конгруэнция на алгебре , изоморфная конгруэнции .

Это и означает, что

Лемма доказана.

Определение 2.2. Если и - факторы на алгебре такие, что

то конгруэнцию обозначим через и назовем централизатором фактора в .

Напомним, что факторы и назыавются перспективными, если либо

либо

Докажем основные свойства централизаторов конгруэнции.

Теорема 6 Пусть , , , - конгруэнции на алгебре . Тогда:

1) если , то

2) если , то

3) если , и факторы , перспективны, то

4) если - конгруэнции на и , то

где , .

Доказательство.

1) Так как конгруэнция централизует любую конгруэнцию и , то

2) Из первого пункта лемы 2.2 следует, что

а в силу леммы 2.4 получаем, что

Пусть - изоморфизм . Обозначим

По лемме 2.5 , а по определению

Следовательно,

3) Очевидно, достаточно показать, что для любых двух конгруэнции и на алгебре имеет место равенство

Покажем вналале, что

Обозначим . Тогда, согласно определению 2.1. на алгебре существует такая конгруэнция , что выполняются следующие свойства:

а) если , то

б) для любого элемента ,

в) если

то

Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда

и

Покажем, что - конгруэнция на . Пусть

для . Тогда

и

Так как - конгруэнция, то для любой -арной операции имеем

Очевидно, что

и

Следовательно,

Очевидно, что для любой пары

Значит,

Итак, по лемме 2.3, - конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, то есть централизует . Пусть

Тогда

Так как , и , то . Следовательно, удовлетворяет определению 2.1.

Если , то

значит,

Пусть, наконец, имеет место (1) и

Тогда

Так как и , то , следовательно, . Из (2) следует, что , а по условию . Значит, и поэтому

Тем самым показано, что конгруэнция удовлетворяет определению 2.1, то есть централизует .

Докажем обратное включение. Пусть

Тогда на алгебре определена конгруэнция

удовлетворяющая определению 2.1. Построим бинарное отношение на алгебре следующим образом:

тогда и только тогда, когда

и , .

Аналогично, как и выше, нетрудно показать, что - конгруэнция на алгебре . Заметим, что из доказанного включения в одну сторону следует, что . Покажем поэтому, что централизует .

Так как

то

то есть удовлетворяет условию 1) определения 2.1.

Если , то

следовательно,

Пусть имеет место (3) и .

Так как

то

Из (4) следует, что , следовательно,

то есть

На основании леммы 2.2 заключаем, что

Следовательно, .

А так как , то , то есть

4) Обозначим . Пусть

и удовлоетворяет определению 2.1.

Определим бинарное отношение на следующим образом

тогда и только тогда, когда

Аналогично, как и выше, нетрудно показать, что - конгруэнция, удовлетворяющая определению 2.1.

Это и означает, что

Теорема доказана.

Как следствия, из доказанной теоремы получаем аналогичные свойства централизаторов в группах и мультикольцах.