*-Алгебры и их применение

дипломная работа

1.4. Простейшие свойства - алгебр

Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.

Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого хА элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого zC , но если z действительно отрицательное число, то его нельзя представить в виде .

Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 - эрмитовы элементы.

Доказательство. Если такое представление имеет место, то х* = х1 +iх2, следовательно:

, (1.5.)

Таким образом, это представление единственно. Обратно, элементы х1, х2, определенные равенством (1.5.), эрмитовы и х = х1 +iх2.

Эти элементы х1, х2 называются эрмитовыми компонентами элемента х.

Заметим, что хх* = х12 + х22 + i(х2х1 - х1х2),

хх* = х12 + х22 - i(х2х1 - х1х2)

так что х нормален тогда и только тогда, когда х1 и х2 перестановочны.

Так как е*е = е* есть эрмитов элемент, то е* = е , то есть единица эрмитов элемент.

Если А - *-алгебра без единицы, а Аґ - алгебра, полученная из А присоединением единицы, то, положив при хА, мы определим инволюцию в Аґ, удовлетворяющую всем требованиям определения 2. Так что Аґ станет *-алгеброй. Говорят, что Аґ есть *-алгебра, полученная из А присоединением единицы.

Теорема 1.4. Если х-1 существует, то (х*)-1 также существует и

(х*)-1 = (х-1)*

Доказательство. Применяя операцию * к обеим частям соотношения

х-1х = хх-1 = е,

получим х*(х-1)*= (х*)-1х*=е.

Но это означает, что (х-1)* есть обратный к х*.

Подалгебра А1 алгебры А называется *-подалгеброй, если из хА1 следует, что х*А1 .

Непустое пересечение *-подалгебр есть также *-подалгебра. В частности, пересечение всех *-поалгебр, содержащих данное множество S А, есть минимальная *-подалгебра, содержащая S.

Коммутативная *-алгебра называется максимальной, если она не содержится ни в какой другой коммутативной *-подалгебре.

Теорема 1.5. Если В - максимальная коммутативная *-подалгебра, содержащая нормальный элемент х , и если х-1 существует, то х-1В.

Доказательство. Так как х т х* перестановочны со всеми элементами из В, то этим же свойством обладают х-1 и (х*)-1 = (х-1)*. В силу максимальности В отсюда следует, что х-1В.

Определение 1.6. Элемент хА - *-алгебры называется унитарным, если хх* = х*х = е, иначе говоря, если х обратим и х = (х*)-1.

В примере 1 п.1.2. унитарные элементы - комплексные числа с модулем, равным 1.

Унитарные элементы А образуют группу по умножению - унитарную группу А. Действительно, если x и y - унитарные элементы *-алгебры А, то

((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,

поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.

Делись добром ;)