logo
Основные методы решения неравенств

4 Рациональные неравенства

Рациональным неравенством называется неравенство, которое содержит только рациональные функции. Например: _ рациональные неравенства (линейные и квадратные неравенства также являются рациональными).

Рациональные неравенства бывают целыми (в них нет операции деления на выражение, содержащее переменную), например и дробно-рациональными (в них есть операция деления на выражение, содержащее переменную), например

Основным методом решения рациональных неравенств является метод интервалов, который базируется на следующей теореме: пусть функция непрерывна на всей числовой оси и обращается в нуль в точках (имеет только корней), причемТогда на каждом из интервалов функция сохраняет знак.

При решении рациональных неравенств методом интервалов нужно:

1) все члены неравенства перенести в левую часть; если неравенство дробно-рациональное, то привести левую часть к общему знаменателю;

2) найти все значения переменной, при которых числитель и знаменатель обращаются в 0;

3) нанести найденные точки на числовую прямую, разбивая ее при этом на интервалы, в каждом из которых рациональная функция сохраняет знак;

4) определить знак функции на любом из интервалов (лучше крайнем);

5) определить знаки на остальных интервалах: при переходе через точку знак меняется на противоположный, если точка является корнем нечетной степени крайности (т.е. встречается нечетное количество раз среди корней числителя и знаменателя); при переходе через точку четной кратности знак сохраняется;

6) множеством решения неравенства являются объединение интервалов с соответствующим знаком функции. В случае нестрогого неравенства к этому множеству добавляются корни числителя.

Пример. Решить неравенство

Решение. Функция является дробно - рациональной и представлена в виде произведения линейных множителей, причем множитель повторяется трижды, - дважды. Отметим нули числителя и знаменателя на координатной прямой. Неравенство является нестрогим, значит, нули числителя изображаются закрашенными точками, а нули знаменателя - выколотыми. Числа разбивают координатную прямую на интервалы, в каждом из которых сохраняет знак.

на интервале Кореньчетной кратности, значит, проходя через эту точку, знак свой не изменит. Поэтомуесли.

Ответ: