Рішення лінійних рівнянь першого порядку

курсовая работа

5. Знаходження наближеного рішення у вигляді матричного ряду

Дамо визначення матричному ряду й експонентній функції матриці.

Матричні ряди. Розглянемо нескінченну послідовність матриць , ,. Будемо говорити, що послідовність матриць сходиться до матриці А: , якщо при . З визначення норми треба, що збіжність матриць еквівалентна заелементної збіжності. Матричним рядом називається символ , причому говорять, що цей ряд сходиться до суми , якщо до f сходиться послідовність часткових сум Sk, де

Нехай , тоді можна визначити ступінь матриці А звичайним образом: (k раз). Розглянемо ряд, називаний статечним:

, , ,

де по визначенню покладемо A0 = En.

Експонентна функція матриці. Як приклад розглянемо статечної ряд, рівний:

.

Тому що радіус збіжності відповідного числового ряду

Дорівнює нескінченності, то ряд сходиться при всіх А. Сума ряду називається експонентною функцією (експонентою) і позначається через еА, якщо ехр{А}.

Приблизно вектор рішень можна знайти як добуток матричного ряду:

і вектора початкових умов y0= [y1,y2, ….yk].

Формула є матричною задачею Коші в наближеному виді.

Експонентою матриці А називається сума ряду

де Е - одинична матриця. Матриця є рішенням матричної задачі Коші: є фундаментальною матрицею системи. Знайдемо розкладання матричного ряду послідовно по сімох, вісьмох і десяти перших членах.

Для одержання розкладання по 7 перших членах (аналогічно по 8,10 і 10). Результатом буде матриця 4*4. Отримані матриці множимо на вектор початкових умов S= [1,2,3,4] і одержуємо наближене рішення у вигляді матричного ряду.

При збільшенні членів розкладання ряду вектор наближених рішень буде прагнути до вектора точних рішень. Цей факт можна спостерігати, графічно порівнюючи зображення точного й наближеного рішень (див. додаток).

Помножимо на відповідний вектор початкових умов і одержимо наближене рішення у вигляді матричного ряду, запишемо отримане рішення для n=7.

[s1 T 1, s2 T 2, s3 T 3, s4 T 4]

Делись добром ;)