Графики и их функции

реферат

3.3 Кривые второго порядка

В предыдущем параграфе было установлено, что всякая прямая в прямоугольной системе координат Оху определяется уравнением первой степени относительно переменных х и у. Так же было установлено, всякое уравнение первой степени ах + bу + с = 0 в прямоугольной системе координат определяет прямую и притом единственную, если а? + b? 0. В настоящей главе мы займемся изучением линий определяемых уравнениями второй степени относительно текущих координат х и у:

ах? + 2bху + су? + 2dх + 2eу + f = 0 (1)

Такие линии называют линиями (кривыми) второго порядка. Коэффициенты уравнения (1) могут принимать различные действительные значения, исключая одновременное равенство а, b и c нулю (в противном случае уравнение (1) не будет уравнением второй степени).

Эллипс.

Эллипсом называют множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек той же плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Составим уравнение эллипса с фокусами в данных точках F1 и F2. Для этого выберем прямоугольную систему координат так, чтобы ось Ох проходила через фокусы, а начало координат делило отрезок F1F2 пополам (см. приложение 14). Обозначив F1F2 = 2с, получим F1(с; 0) и F2(-с; 0). Пусть М(х; у) - произвольная точка эллипса.

Расстояние r1 = F1M и r2 = F2M называются фокальными радиусами точки М.

Положим r1 + r2 = 2а; (1)

Тогда согласно определению эллипса 2а - величина постоянная, причем 2а>2с, т.е. а>c.

По формуле расстояния между двумя точками находим

r1 = и r2 =

Подставим найденные значения r1 и r2 в равенство (1) получим уравнение эллипса

После несложных преобразований уравнение примет вид

(2)

Уравнение (2) называется каноническим уравнением эллипса.

Исследование:

Координаты точки О(0; 0) не удовлетворяют уравнению (2), поэтому эллипс, определяемый этим уравнением, не проходит через начало координат.

Найдем точки пересечения эллипса с осями координат. Положив в уравнении (2) у = 0, найдем х = а. Следовательно, эллипс пересекает ось Ох в точках А1(а; 0) и А2(-а; 0). Аналогично получаем точки пересечения эллипса с осью Оу: В1(0; b) и B2(0; - b)

D(y) [-a; a]

E(y) [-b; b]

При возрастании х от 0 до а величина у убывает от b до 0, а при возрастании уот 0 до b величина х убывает от а до 0.

Частным случаем эллипса является окружность, где а = b.

Окружность

Как известно, окружностью называют множество всех точек плоскости, одинаково удаленных от данной точки, называемой центром.

Пусть дана окружность радиусом r с центром в точке О1(a; b) (см. приложение 15); требуется составить ее уравнение.

Возьмем на данной окружности произвольную точку М (х; у)

Имеем: О1М = r, т.е. = r

Откуда (х-а) ? + (у - b) ? = r? (1)

Итак, уравнению (1) удовлетворяют координаты произвольной точки окружности. Более того, этому уравнению не удовлетворяют координаты никакой точки, не лежащей на окружности, так как если

О1М< r, то (х-а) ? + (у - b) ? < r?,

и если

О1М> r, то (х-а) ? + (у - b) ? > r?.

Следовательно, (1) Есть уравнение окружности радиусом r с центром в точке О1(a; b). Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид

(х-а) ? + у? = r?

Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид

х? + (у - b) ? = r?

Наконец, если центр окружности находится в начале координат, т.е. если а = b = 0, то уравнение примет (1) вид

х? + у? = r?

Если в уравнении (1) раскрыть скобки, перенести все члены в левую часть и расположить их по степеням х и у, то получим

x? + y? - 2ax - 2by + a? + b? - r? = 0

Отсюда следует, что уравнение окружности является уравнением второй степени относительно переменных х и у, как бы она ни была расположена в плоскости Оху.

В этой главе были рассмотрены основные простейшие функции, кривые второго порядка и тригонометрические функции, так же представлены их графики.

Делись добром ;)