1. Верхнее центральное число семейства функций
Рассмотрим какое-либо семейство кусочно-непрерывных и равномерно ограниченных функций:
, ,
зависящее от параметра x непрерывно в том смысле, что из следует
равномерно по крайней мере на каждом конечном отрезке [0,t]. Параметр x может пробегать некоторое компактное (в частности, конечное) множество.
Определение 1 [1, с.103]: ограниченная измеримая функция R (t) называется верхней функцией для семейства P, если все функции этого семейства равномерно не превосходят в интегральном смысле функцию R (t):
,
т.е. если
,
где - константа, общая для всех и , но, вообще говоря, зависящая от выбора R и >0.
Определение 2 [1, с.103]: совокупность всех верхних функций называется верхним классом семейства P (обозначим через N=N (P)).
Определение 3 [1, с.534]: число
называется верхним средним значением функции p (t).
Определение 4 [1, с.103]: число
где - верхнее среднее значение функции R (t), называется верхним центральным числом семейства P. Оно будет обозначаться также .
Докажем следующее утверждение: если семейство состоит из двух функций и при этом , то верхний класс семейства P можно считать состоящим из одной функции , и .
Неравенство означает, что
и для любого существует такая константа , что
Или
(1)
Аналогичное неравенство для функции очевидно
.
Согласно определения 1 является верхней функцией для семейства
.
Докажем равенство
.
Если существует такая верхняя функция , что для всех , то эта функция одна образует верхний класс и [1, с.104].
Найдем такую верхнюю функцию , что .
Рассмотрим интегралы
Разделим последнее неравенство на (t-s), получим
Устремив и вычислив верхний предел при , получим
или
Итак, имеем
Значит, .
Так как - верхняя функция, то .
- 8.2. Некоторые важнейшие характеристики линейных колебательных систем.
- 4.5 Расчет показателей надежности линейного тракта
- Центральные резцы верхней челюсти
- 2.7. Показатели качества линейных непрерывных систем
- Центральная система
- 5.2.2. Линейные, линейно-функциональные и линейно-штабные организационные структуры
- Вопрос 22. Относительные показатели вариации. Относительные показатели вариации включают:
- Могут ли векторы составлять фундаментальную систему решений некоторой системы линейных однородных уравнений? Почему?
- Линейные подразделения и центральные службы.
- 2.4.Определение линейной системы.