logo search
8

Математическая строгость

Примерно до 1870 г. математики пребывали в убеждении, что действуют по предначертаниям древних греков, применяя дедуктивные рассуждения к математическим аксиомам, тем самым, обеспечивая своими заключениями не меньшую надежность, чем та, которой обладали аксиомы. Неевклидова геометрия и кватернионы (алгебра, в которой не выполняется свойство коммутативности) заставили математиков осознать, что-то, что они принимали за абстрактные и логически непротиворечивые утверждения, в действительности зиждется на эмпирическом и прагматическом базисе.

Создание неевклидовой геометрии сопровождалось также осознанием существования в евклидовой геометрии логических пробелов. Одним из недостатков евклидовых "Начал" было использование допущений, не сформулированных в явном виде. По-видимому, Евклид не подвергал сомнению те свойства, которыми обладали его геометрические фигуры, но эти свойства не были включены в его аксиомы. Кроме того, доказывая подобие двух треугольников, Евклид воспользовался наложением одного треугольника на другой, неявно предполагая, что при движении свойства фигур не изменяются. Но кроме таких логических пробелов, в "Началах" оказалось и несколько ошибочных доказательств.

Создание новых алгебр, начавшееся с кватернионов, породило аналогичные сомнения и в отношении логической обоснованности арифметики и алгебры обычной числовой системы. Все ранее известные математикам числа обладали свойством коммутативности, т. е. ab = ba. Кватернионы, совершившие переворот в традиционных представлениях о числах, были открыты в 1843 г. У. Гамильтоном (1805 – 1865). Они оказались полезными для решения целого ряда физических и геометрических проблем, хотя для кватернионов не выполнялось свойство коммутативности. Кватернионы вынудили математиков осознать, что если не считать посвященной целым числам и далекой от совершенства части евклидовых "Начал", арифметика и алгебра не имеют собственной аксиоматической основы. Математики свободно обращались с отрицательными и комплексными числами и производили алгебраические операции, руководствуясь лишь тем, что они успешно работают. Логическая строгость уступила место демонстрации практической пользы введения сомнительных понятий и процедур.

Почти с самого зарождения математического анализа неоднократно предпринимались попытки подвести под него строгие основания. Математический анализ ввел два новых сложных понятия — производная и определенный интеграл. Над этими понятиями бились Ньютон и Лейбниц, а также математики последующих поколений, превратившие дифференциальное и интегральное исчисления в математический анализ. Однако, несмотря на все усилия, в понятиях предела, непрерывности и дифференцируемости оставалось много неясного. Кроме того, выяснилось, что свойства алгебраических функций нельзя перенести на все другие функции. Почти все математики 18 в. и начала 19 в. предпринимали усилия, чтобы найти строгую основу для математического анализа, и все они потерпели неудачу. Наконец, в 1821 г., О. Коши (1789 – 1857), используя понятие числа, подвел строгую базу под весь математический анализ. Однако позднее математики обнаружили у Коши логические пробелы. Желаемая строгость была, наконец, достигнута в 1859 К. Вейерштрассом (1815 – 1897).

Вейерштрасс вначале считал свойства действительных и комплексных чисел самоочевидными. Позднее он, как и Г. Кантор (1845 – 1918) и Р. Дедекинд (1831 – 1916), осознал необходимость построения теории иррациональных чисел. Они дали корректное определение иррациональных чисел и установили их свойства, однако свойства рациональных чисел по-прежнему считали самоочевидными. Наконец, логическая структура теории действительных и комплексных чисел приобрела свой законченный вид в работах Дедекинда и Дж. Пеано (1858 – 1932). Создание оснований числовой системы позволило также решить проблемы обоснования алгебры.

Задача усиления строгости формулировок евклидовой геометрии была сравнительно простой и сводилась к перечислению определяемых терминов, уточнению определений, введению недостающих аксиом и восполнению пробелов в доказательствах. Эту задачу выполнил в 1899 г. Д. Гильберт (1862 – 1943). Почти в то же время были заложены и основы других геометрий. Гильберт сформулировал концепцию формальной аксиоматики. Одна из особенностей предложенного им подхода – трактовка неопределяемых терминов: под ними можно подразумевать любые объекты, удовлетворяющие аксиомам. Следствием этой особенности явилась возрастающая абстрактность современной математики. Евклидова и неевклидова геометрии описывают физическое пространство. Но в топологии, являющейся обобщением геометрии, неопределяемый термин "точка" может быть свободен от геометрических ассоциаций. Для тополога точкой может быть функция или последовательность чисел, равно как и что-нибудь другое. Абстрактное пространство представляет собой множество таких "точек".

Аксиоматический метод Гильберта вошел почти во все разделы математики 20 в. Однако вскоре стало ясно, что этому методу присущи определенные ограничения. В 1880-х Кантор попытался систематически классифицировать бесконечные множества (например, множество всех рациональных чисел, множество действительных чисел и т. д.) путем их сравнительной количественной оценки, приписывая им т. н. трансфинитные числа. При этом он обнаружил в теории множеств противоречия. Таким образом, к началу 20 в. математикам пришлось иметь дело с проблемой их разрешения, а также с другими проблемами оснований их науки, такими, как неявное использование т. н. аксиомы выбора. И все же ничто не могло сравниться с разрушительным воздействием теоремы неполноты К. Гёделя (1906 – 1978). Эта теорема утверждает, что любая непротиворечивая формальная система, достаточно богатая, чтобы содержать теорию чисел, обязательно содержит неразрешимое предложение, т. е. утверждение, которое невозможно ни доказать, ни опровергнуть в ее рамках. Теперь общепризнано, что абсолютного доказательства в математике не существует. Относительно того, что такое доказательство, мнения расходятся. Однако большинство математиков склонно полагать, что проблемы оснований математики являются философскими. И действительно, ни одна теорема не изменилась вследствие вновь найденных логически строгих структур; это показывает, что в основе математики лежит не логика, а здравая интуиция.

Если математику, известную до 1600 г., можно охарактеризовать как элементарную, то по сравнению с тем, что было создано позднее, эта элементарная математика бесконечно мала. Расширились старые области и появились новые, как чистые, так и прикладные отрасли математических знаний. Выходят около 500 математических журналов. Огромное количество публикуемых результатов не позволяет даже специалисту ознакомиться со всем, что происходит в той области, в которой он работает, не говоря уже о том, что многие результаты доступны пониманию только специалиста узкого профиля. Ни один математик сегодня не может надеяться знать больше того, что происходит в очень маленьком уголке науки.

Контрольные вопросы

  1. Математика древности. Вавилония и Египет.

  2. Математика древности. Классическая Греция.

  3. Математика древности. Греция. Александрийский период.

  4. Математика древности. Индия и арабы.

  5. Математика средних веков. Европа. Возрождение.

  6. Начала современной математики. Алгебра.

  7. Начала современной математики. Аналитическая геометрия.

  8. Начала современной математики. Математический анализ.

  9. Современная математика. Неевклидова геометрия.

  10. Современная математика. Математическая строгость.