logo search
Zaripov

Построение моделей систем

На основании изложенного в предыдущих двух параграфах решаются задачи изучения структуры системы, выявления параметров, характеризующих функционирование системы и влияющих на эффективность и качество ее работы, анализа информационных потоков, циркулирующих в системе. Данные этапы являются предварительными этапами работы по построению модели системы; цель этих этапов — выявление основных структурных элементов, динамических и информационных компонентов системы. После выяснения этих вопросов переходят к решению основной задачи - построению модели системы.

Моделью называют некий объект, который в определенных условиях может заменять оригинал, воспроизводя интересующие свойства и характеристики оригинала. Модели бывают материальные и абстрактные. Разновидностью абстрактных моделей являются математические модели. Они и будут объектом дальнейшего рассмотрения.

Построение математической модели системы есть процесс формализации определенных сторон существования, жизнедеятельности системы, ее поведения с точки зрения конкретной решаемой задачи. Различают статические и динамические модели. Статическая модель отражает конкретное состояние объекта. Примером статической модели является структурная схема системы. Динамическая модель описывает процесс изменения состояний системы. При решении задач системного анализа цели исследования заключаются в изучении характеристик системы. Следовательно, можно сказать, что динамические модели находят более широкое применение, чем статические.

Рассмотрим типы математических моделей. Выделяют два класса моделей: аналитические и имитационные. В аналитических моделях поведение сложной системы записывается в виде некоторых функциональных соотношений или логических условий. Наиболее полное исследование удается провести в том случае, когда получены явные зависимости, связывающие искомые величины с параметрами сложной системы и начальными условиями ее изучения.

Для построения математических моделей имеется мощный математический аппарат (функциональный анализ, исследование операций, теория вероятностей, математическая статистика, теория массового обслуживания и т.д.). Наличие математического аппарата и относительная быстрота и легкость получения информации о поведении сложной системы способствовало повсеместному и успешному распространению аналитических моделей при анализе характеристик сложных систем. Когда явления в сложной системе настолько сложны и многообразны, что аналитическая модель становится слишком грубым приближением к действительности, системный аналитик вынужден использовать имитационное моделирование.

В имитационной модели поведение компонентов сложной системы описывается набором алгоритмов, которые затем реализуют ситуации, возникающие в реальной системе. Моделирующие алгоритмы позволяют по исходным данным, содержащим сведения о начальном состоянии сложной системы, и фактическим значениям параметров системы отобразить реальные явления в системе и получить сведения о возможном поведении сложной системы для данной конкретной ситуации. На основании этой информация аналитик может принять соответствующие решения. Отмечается, что предсказательные возможности имитационного моделирования значительно меньше, чем у аналитических моделей.

Вопрос о том, какой модели следует отдать предпочтение при проведении исследований характеристик системы, не является очевидным. Аналитическая модель имеет некоторые преимущества по сравнению с имитационной моделью. Во-первых, аналитическая модель дает решение поставленной задачи в законченной форме. Во-вторых, применение аналитической модели обеспечивает глубину анализа. С помощью аналитических моделей можно проводить исследование характеристик в некоторой области определения параметров, в которой модель адекватна описываемым явлениям или процессам. Применение аналитических моделей позволяет получить решение в виде функциональной зависимости исследуемых характеристик от параметров модели. Имитационная модель за один цикл ее применения производит расчет характеристик в одной точке. Для получения функциональной зависимости выходной характеристики от параметров модели необходимо провести многократные расчеты на имитационной модели.

Таким образом, на основании сказанного нельзя однозначно решить, какая модель лучше. Обе модели являются полезным инструментом исследования и об их соответствии решаемым проблемам надо судить в контексте конкретного применения. В задачах системного анализа целесообразно проводить комбинированные исследования, использующие как аналитические, так и имитационные модели.