posled_POLUMARKOVSKIYe_PROTsYeSS_I_SPYeTsIAL_N_
1.7. Метод Хинчина
Применяя метод Хинчина, обозначим
zj = πj-1λj-1 – πjµj,
тогда из (18) получим z1 = 0, а из (17) запишем равенства zj = zj+1, следовательно, имеет место равенство πj-1λj-1 – πjµj = 0, откуда получим равенство
.
Вероятность π0 найдём из условия нормировки (19)
,
откуда получим
.
Здесь возможны два случая, связанные со сходимостью ряда:
1),
тогда стационарные вероятности существуют и равны
.
2),
тогда не существует стационарного распределения для рассматриваемого процесса гибели и размножения.
Содержание
- Полумарковские процессы и специальные потоки однородных событий
- Глава 1. Цепи Маркова с непрерывным временем
- 1.1. Определение и основные свойства цепи Маркова с непрерывным временем
- 1.2. Дифференциальные уравнения Колмогорова
- 1.2.1. Обратная система дифференциальных уравнений Колмогорова
- 1.2.2. Прямая система дифференциальных уравнений Колмогорова
- 1.3. Финальные вероятности
- 1.4. Время перехода из одного состояния в другое для цепей Маркова с непрерывным временем
- 1.5. Статистический смысл финальных (стационарных) вероятностей
- 1.6. Время пребывания цепи Маркова в j-ом состоянии
- 1.6. Процесс размножения и гибели
- 1.7. Метод Хинчина
- 1.8. Процесс чистого размножения
- 1.8. Пуассоновский процесс
- 1.9. Метод производящих функций
- Глава 2. Теория потоков событий
- 2.1. Определения и терминология
- А. Стационарность
- Интенсивность и параметр потока
- 2.2. Пуассоновский поток событий
- 2.3. Варианты пуассоновского потока событий
- 2.4. Потоки восстановления
- 2.5. Распределение величины перескока и недоскока для потоков восстановления
- 2.6. Парадокс остаточного времени
- 2.7. Основное свойство рекуррентных потоков
- Глава 3. Полумарковские процессы
- 3.1. Определение основных понятий теории полумарковских процессов
- 3.2. Методы исследования полумарковских процессов
- 3.2.1. Метод дополнительной переменно для исследования процесса марковского восстановления
- 3.2.2. Исследование полумарковского процесса методом дополнительной переменной y(t)
- 3.2.3. Метод дополнительных переменных z(t) и s(t) исследования полумарковского процесса
- Глава 4. Специальные (коррелированные) потоки событий
- 4.1. Модулированные пуассоновские потоки (mmp-потоки)
- 4.3. Bmap-потоки
- 4.4. Полумарковские потоки
- 4.5. Уравнения Колмогорова в теории потоков событий
- 4.5.1. Потоки с дискретной компонентой
- 4.5.2. Потоки с непрерывной компонентой
- 4.6. Метод характеристических функций для анализа потоков
- Для рекуррентного потока
- Для потока марковского восстановления
- Для полумарковского потока
- 4.7. Исследование моделей потоков
- 4.7.1. Исследование модели map-потока
- 4.7.2. Решение уравнения (12) методом матричной экспоненты
- 4.7.3. Исследование модели полумарковского потока
- Нахождение распределения r(z)
- 4.7.4. Решение основного уравнения для полумарковского потока
- Глава 5. Исследование специальных потоков событий методом асимптотического анализа
- 5.1. Метод асимптотического анализа map-потоков в условии растущего времени
- 5.1.1 Асимптотика первого порядка
- 5.1.2. Асимптотика второго порядка
- 5.2. Метод асимптотического анализа sm-потоков в условии растущего времени
- 5.2.1. Асимптотика первого порядка
- 5.2.2. Асимптотика второго порядка
- 5.3. Аппроксимация допредельного распределения
- 5.3.1. Аппроксимация второго порядка допредельного распределения
- 5.3.2. Гауссовская аппроксимация
- 5.4. Метод асимптотического анализа mmp-потоков в условии предельно редких изменений состояний потока
- 5.4.1. Асимптотика первого порядка
- 5.4.2. Асимптотика произвольного порядка
- Литература