logo search
практика1

Введение

Каждый, кто хоть раз в жизни наблюдал за муравьями, обязательно должен был заметить: вся деятельность этих насекомых имеет ярко выраженную групповую окраску. Работая вместе, группа муравьев способна затащить в муравейник кусок пищи или строительного материала, в 10 раз больше них самих. Организацию муравьев можно применять и людям в решении некоторых задач. Сам по себе муравей - достаточно примитивное существо. Все его действия, по сути, сводятся к элементарным инстинктивным реакциям на окружающую обстановку и своих собратьев. Однако несколько муравьев вместе образуют сложную систему. Например, группа муравьев прекрасно умеет находить кратчайшую дорогу к пище. Если какое-нибудь препятствие - палка, камень, нога человека - встает на пути, они быстро находят новый оптимальный маршрут. Муравьи решают проблемы поиска путей с помощью химической регуляции. Каждый муравей выделяет феромоны, и их след образует, таким образом, путь муравья. Другой муравей, почуяв след на земле, устремляется по нему. Чем больше по одному пути прошло муравьев - тем явнее след, а чем явнее след - тем большее «желание» пойти в ту же сторону возникает у муравьев. Поскольку муравьи, нашедшие самый короткий путь к цели, тратят меньше времени на путь туда и обратно, их след быстро становится самым заметным. Он привлекает большее число муравьев, и круг замыкается. Остальные пути - менее используемые - потихоньку пропадают. Алгоритмы муравья (Ant algorithms), или оптимизация по принципу муравьиной колонии (это название было придумано изобретателем алгоритма, Марко Дориго (Marco Dorigo)), основаны на применении нескольких агентов и обладают специфическими свойствами, присущими муравьям, и используют их для ориентации в физическом пространстве. Алгоритмы муравья особенно интересны потому, что их можно использовать для решения не только статичных, но и динамических проблем, например, в изменяющихся сетях.

Мы рассмотрим общий случай алгоритма муравьиной колонии.