Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

дипломная работа

§4. Торсы в пространстве 1R4

Рассмотрим кривую

(20) в пространстве 1R4.

Определение 4.1. Торсом в пространстве 1R4, определенном кривой называется поверхность, образованная всеми касательными к этой кривой.

Сама кривая называется ребром возврата этого торса. Каждая касательная к ребру возврата называется прямолинейной образующей торса.

Уравнение торса

(21)

(21) - уравнение торса, определяемого ребром возврата .

На ребре возврата выберем естественную параметризацию. Пусть t=t(s), тогда и s=i.

Свойства естественной параметризации:

1. ;

. Значит

2. ;

()==1 ()+ ()=0;

2()=0()=0

Исследуем торс (21) в пространстве 1R4, обозначив при этом t = u, = v.

Тогда уравнение торса (21) запишется в виде: . (22)

По теореме о развертывающейся линейчатой поверхности векторы должны лежать в одной плоскости. Очевидно, что данные вектора лежат в одной плоскости, т.к. два из них одинаковы. Следовательно, торс развертывающаяся линейчатая поверхность, а значит, касательная плоскость к торсу в любой его точке не зависит от параметра v, что легко доказать. Действительно из формул (22) получим:

Это означает, что базисы {} и {} выражаются друг через друга. Из этого следует, что

(23),

при любом параметре v, значит касательная плоскость к торсу одна и та же вдоль образующей. Известно, что соприкасающаяся плоскость к кривой в точке M определяется векторами . Таким образом, исходя из формулы (23) получим, что соприкасающаяся плоскость ребра возврата - есть касательная плоскость к торсу.

Рассмотрим торс пространства 1R4, порожденной кривой определяемый уравнением (23). Введем координатные линии на поверхности торса: u-линии (v=c) и v-линии (u=c). Найдем скалярное произведение векторов

(24)

В общем случае относительно величин и ничего сказать нельзя. Поэтому будем делать предположение относительно кривой . Предположим, что касательный вектор к кривой во всех точках является вектором действительной длины. На ребре возврата выбираем естественную параметризацию. Пусть u=u(s), тогда и Параметр s обозначим через u, получим , т.е. вектор имеет постоянную длину, тогда поскольку , из (24) следует, что , а значит координатные линии на торсе в такой системе координат не ортогональны. Перейдем к новым координатам U и V так, чтобы координатные линии были ортогональны, причем заметим, чтоv-линии - это прямолинейные образующие торса. При переходе к новым координатам потребуем, чтобы семейство v-линий осталось прежним, а u-линии изменились и стали перпендикулярны v-линиям. Таким образом, перед нами стоит задача отыскания ортогональных траекторий к прямолинейным образующим торса.

Рассмотрим первую квадратичную форму поверхности, которая при условии, что касательная плоскость к торсу является псевдоевклидовой.

Пусть S - гладкая поверхность, - ее векторное уравнение и

Первой квадратичной формой поверхности S называют выражение I=.

Запишем это выражение подробнее. Имеем

откуда

. (25)

Выражение (25) в каждой точке поверхности S представляет собой квадратичную форму от дифференциалов du и dv.

Для коэффициентов первой квадратичной формы часто используют следующие обозначения:

.

Таким образом первая квадратичная форма имеет вид:

(26)

Угол между кривыми равен углу между касательными. Пусть гладкие кривые 1 и 2 лежат на поверхности S с векторным уравнением и пересекается в некоторой точке X0.

Вектор лежит в касательной плоскости к поверхности S в точке X0 (Рис.4.2).

Значения дифференциалов можно выбрать так, чтобы был вектором касательной к кривой 1 в точке X0. Достаточно взять () (здесь u=u(t) и v=v(t) - уравнения кривой 1 на поверхности S).

Аналогично строится вектор - вектор касательной к кривой 2 в точке X0, отвечающий значениям дифференциалов , функций, определяющих кривую 2:

.

Поэтому

Требуется, чтобы ортогональные линии были ортогональны, т.е.

Учитывая, что u - естественный параметр, найдем коэффициенты E, F, G:

Подставляя полученные выражения в (26) имеем

Воспользовавшись (27) и полученными выражениями для коэффициентов, получим Разделим последнее равенство на , получим

Исходное семейство линий задано дифференциальным уравнением

, а ортогональные траектории получены в виде Подставляя эти выражения в (28), имеем уравнение для , из которого . Учитывая, что исходное семейство линий - это v-линии, для которых du=0, а значит =0, получим =-1. Таким образом, , решая это дифференциальное уравнение, находим u+v=const - условие ортогональности траекторий. Итак, искомая замена координат имеет вид:

Тогда обратная замена:

Уравнение торса в новых координатах примет вид:

Обозначим U, V теми же символами u, v тогда уравнение торса перепишется следующим образом:

.(29)

Рассмотрим на торсе (29) кривую

u=u(t), v=v(t).(30)

Получим ее уравнение в виде:

. (31)

Направляющий вектор касательной:

. (32)

Касательная к любой кривой, лежащей на торсе и проходящей через данную точку N, лежит в плоскости Эта плоскость будет называться касательной плоскостью к торсу и обозначается

Найдем векторы . Из уравнения (29) получим:

.

Таким образом, плоскость определяется точкой L торса и векторами , и следовательно, совпадает с соприкасающейся плоскостью ребра возврата .

Получена теорема.

Теорема 4.1. Касательная плоскость к торсу в произвольной точке прямолинейной образующей совпадает с соприкасающейся плоскостью к ребру возврата в точке касания прямолинейной образующей.

Построим канонический репер в произвольной точке N торса. Будем считать параметр u естественным параметром ребра возврата. Тогда согласно

(9):

Введем следующие обозначения:

Тогда - вектор мнимой длины, а - вектор единичной длины, взаимно ортогональные и лежат в касательной плоскости к торсу в точке N, совпадающей с соприкасающейся плоскостью ребра возврата, причем идет по прямолинейной образующей, а ему ортогонален.

Вектора получим из векторов соприкасающегося репера ребра возврата параллельным переносом в точку L. При этом получим репер в произвольной точке L торса, с условием

.(33)

Уравнение (33) целиком определяется торсом. Этот репер будем называть каноническим репером торса.

Найдем деривационные формулы канонического репера торса с учетом того, что зависят только от u. С учетом (14) и (15):

и (34)

Делись добром ;)