logo
Дифференциальные свойства гиперболических функций

Введение

В математике и её приложениях к естествознанию и технике находят широкое применение показательные функции. Это, в частности, объясняется тем , что многие изучаемые в естествознании явления относятся к числу так называемых процессов органического роста, в которых скорости изменения участвующих в них функций пропорциональны величинам самих функций.

Если обозначить через функцию, а через аргумент, то дифференциальный закон процесса органического роста может быть записан в виде где некоторый постоянный коэффициент пропорциональности.

Интегрирование этого уравнения приводит к общему решению в виде показательной функции

Если задать начальное условие при , то можно определить произвольную постоянную и, таким образом, найти частное решение которое представляет собой интегральный закон рассматриваемого процесса.

К процессам органического роста относятся при некоторых упрощающих предположениях такие явления, как, например, изменение атмосферного давления в зависимости от высоты над поверхностью Земли, радиоактивный распад, охлаждение или нагревание тела в окружающей среде постоянной температуры, унимолекулярная химическая реакция (например, растворение вещества в воде), при которой имеет место закон действия масс ( скорость реакции пропорциональна наличному количеству реагирующего вещества ), размножение микроорганизмов и многие другие.

Возрастание денежной суммы вследствие начисления на неё сложных процентов (проценты на проценты) также представляет собой процесс органического роста.

Эти примеры можно было бы продолжать.

Наряду с отдельными показательными функциями в математике и её приложениях находят применение различные комбинации показательных функций, среди которых особое значение имеют некоторые линейные и дробно-линейные комбинации функций и так называемые гиперболические функции. Этих функций шесть, для них введены следующие специальные наименования и обозначения:

(гиперболический синус),

(гиперболический косинус),

(гиперболический тангенс),

(гиперболический котангенс),

(гиперболический секанс),

(гиперболический секанс).

Возникает вопрос, почему даны именно такие названия, причём здесь гипербола и известные из тригонометрии названия функций: синус, косинус, и т. д.? Оказывается, что соотношения, связывающие тригонометрические функции с координатами точек окружности единичного радиуса, аналогичны соотношениям, связывающим гиперболические функции с координатами точек равносторонней гиперболы с единичной полуосью. Этим как раз и оправдывается наименование гиперболических функций.