Елементи багатомірної геометрії

дипломная работа

§1. Історична довідка

Багатомірна геометрія - геометрія просторів розмірності, більше трьох. Термін «багатомірна геометрія» застосовується до тих просторам, геометрія яких була спочатку розвинена для випадку трьох вимірів і тільки потім узагальнена на число вимірів n > 3, тобто, насамперед до евклідова простору, а також до просторів Лобачевского, Римана, проективному, афінномуу (загальні ж риманови й інші простори були визначені відразу для n-вимірів). Поділу трьох- і багатомірної геометрії має історичне й навчальне значення, тому що задачі ставляться і вирішуються для будь-якого числа вимірів, коли й оскільки це осмислено. Побудова геометрії зазначених просторів для n-вимірів проводиться за аналогією з випадком трьох вимірів. При цьому можна виходити з узагальнення безпосередньо геометричних підстав 3-мірні геометрії, з тієї або іншої системи її аксіом або з узагальнення її аналітичної геометрії, переносячи її основні висновки з випадку трьох координат на довільне n.

Саме так і починалася побудова n-мірної евклідової геометрії. У цей час воліють вихідні з поняття векторного простору.

Історично подання в більш ніж 3-мірному просторі зароджувалася поступово; спочатку - на ґрунті геометричного подання ступенів: а2 - «квадрат», а3 - «куб», а4 - «біквадрат», а5 - «кубоквадрат» і т.д. (ще в Диофанта в 3 в. і далі в ряду середньовічних авторів). Думка в багатомірному просторі виражав И. Кант (1746), а про приєднання до простору в якості 4-й координати часу писав Ж. Даламбер (1764). Побудова ж евклідової геометрії було здійснено А. Кели (1843), Г. Грассманом (1844) і Л. Шлефли (1852). Первісні сумніви й містика, звязані зі змішанням цих узагальнень із фізичним простором, були переборені, і n-мірний простір як плідне формально-математичне поняття незабаром повністю зміцнилося в математику.

Багатомірні простори виникли шляхом узагальнення, аналогії з геометрією на площині й у тривимірному просторі. На площині кожна крапка задається в системі координат двома числами - координатами цієї крапки, а в просторі - трьома координатами. В n-мірному ж просторі, крапка задається n координатами, тобто записується у вигляді A(x1, x2, ..., xn), де x1, x2, ..., xn - довільні дійсні числа (координати крапки А). На площині система координат має дві осі, у просторі - три, а в n-мірному просторі система координат містить n осей, причому кожні дві із цих осей перпендикулярні один одному. Звичайно, такі простори існують лише в уяві математиків і тих фахівців з інших областей з інших областей знання, які застосовують ці математичні абстракції. Адже реальний простір, у якому ми живемо, математично добре описується тривимірним простором (евклідовим або римановим, але саме тривимірним). Побачити - у буквальному, фізичному змісті цього слова - фігури в чотирьохмірному просторі (а тим більше в просторах більшого числа вимірів) не в змозі ніхто, навіть самий геніальний математик; їх можна бачити тільки думкою.

Існують різні парадокси четвертого виміру. Якщо, наприклад, на площині є кільце (оболонка), а усередині - кружок, то як би ми не рухали цей кружок по площині, вийняти його із цієї оболонки, не розриваючи її, неможливо. Але варто тільки вийти в третій вимір, і кружок легко вийняти з кільця, піднявши його нагору, над площиною, те, не прориваючи оболонку, неможливо вийняти з її ця кулька. Але якби існував четвертий вимір, то можна було б «підняти» кульку над тривимірним простором у напрямку четвертого виміру, а потім покласти його знову в тривимірний простір, але вже поза оболонкою. І те, що це зробити нікому не вдається, приводять як довід проти існування четвертого виміру. Довід помилковий, тому що в ньому поплутані два питання.

Перше питання: чи є в реальному? Відповідь на це питання негативний.

Друге питання: чи можна розглядати чотирьохмірний простір абстрактно, математично? Відповідь стверджувальна.

Немає нічого нелогічного або суперечливого в тім, щоб розглядати четвірки чисел (x1, x2, x3, x4), досліджувати властивості цих «чотирьохмірних крапок», становити з них фігури, доводити теореми, постійно ладу таким чином, геометрію чотирьохмірного (або, взагалі n-мірного) простору. Але математична несуперечність n-мірної геометрії ще недостатня для судження про цінність цієї теорії.

Делись добром ;)