Изучение содержания, доказательств и применения основных математических теорем

курсовая работа

5. Правило Лопиталя

Гийом Франсуа Лопиталь (фр. Guillaume Francois Antoine, marquis de LHopital, 1661-1704) -- французский математик, автор первого учебника по математическому анализу.

Сын богатых родителей, маркиз Лопиталь поступил сперва в военную службу, но по слабости зрения вскоре оставил ее и посвятил себя наукам. Состоял членом Парижской академии наук, участник ученого кружка Мальбранша. Был женат на Мари-Шарлотт де Ромий де ла Шенелэ (фр. Marie-Charlotte de Romilley de la Chesnelaye), тоже занимавшейся математикой.

В 1690-х годах занял видное место в школе Лейбница, с новым методом которого его познакомил Иоганн Бернулли в 1692 во время своего пребывания в Париже в поместье Лопиталя.

Главная заслуга Лопиталя заключается в первом систематическом изложении математического анализа, данное им в сочинении «Анализ бесконечно малых» (фр. Analyse des infiniment petits pour lintelligence des lignes courbes, 1696). В этой книге собраны и приведены в стройное целое отдельные вопросы, разбросанные до того в разных повременных изданиях, а также приводится Правило Лопиталя. В предисловии Лопиталь указывает, что без всякого стеснения пользовался открытиями Лейбница и братьев Бернулли и «не имеет ничего против того, чтобы они предъявили свои авторские права на все, что им угодно». Современников, однако, сильно озадачило то, что Иоганн Бернулли предъявил претензии на все сочинение Лопиталя целиком.

Другое известное сочинение Лопиталя, «Traite analytique des sections coniques», напечатано в 1707 г. Лопиталю принадлежит также решение ряда задач, в том числе о кривой наименьшего времени ската (см. Брахистохрона), о кривой, по которой должен двигаться груз, прикрепленный к цепи и удерживающий в равновесии подъемный мост. Решение этих задач помогло ему стать в один ряд с Ньютоном, Лейбницем и Якобом Бернулли. [1, с. 240]

На основании теоремы Коши о среднем можно получить удобный метод вычисления некоторых пределов, называемый правилом Лопиталя.

Теорема. Пусть функции и непрерывны и дифференцируемы во всех точках полуинтервала и при совместно стремятся к нулю или бесконечности. Тогда, если отношение их производных имеет предел при , то этот же предел имеет отношение и самих функций, то есть

.

Проведем доказательство данной теоремы только для случая, когда . Так как пределы у обеих функций одинаковы, то доопределим их на отрезке , положив, что при выполняется равенство . Возьмем точку . Так как функции и удовлетворяют теореме Коши (п. 2.14), применим ее на отрезке :

,

где . Так как , то

.

Перейдем в данном равенстве к пределу:

.

Но если , то и , находящееся между точками и , будет стремится к , значит

.

Отсюда, если , то и , то есть

,

что и требовалось доказать.

Если при , то снова получается неопределенность вида и правило Лопиталя можно применять снова, то есть

Доказательство правила Лопиталя для случая проводится сложнее, и мы его рассматривать не будем.

При раскрытии неопределенностей типа , , , , правило Лопиталя применять непосредственно нельзя. Вначале все эти неопределенности необходимо преобразовать к виду или .

Правило Лопиталя может быть использовано при сравнении роста функций, в случае когда . Наибольший практический интерес здесь представляют функции , , . Для этого найдем пределы их отношений:

1) , значит, растет быстрее, чем ;

2) , значит, растет быстрее, чем ;

3) , значит, растет быстрее, чем .

Отсюда следует, что быстрее всего растет , затем и, наконец, .

Делись добром ;)