logo
Интеграл Лебега-Стилтьеса

2.10 Теорема о среднем, оценки

Пусть в промежутке функция ограничена:

а монотонно возрастает. Если существует интеграл Стилтьеса от по , то имеет место формула

(22)

Это и есть теорема о среднем для интегралов Стилтьеса.

Для доказательства будем исходить из очевидных неравенств для стилтьесовской суммы :

Переходя к пределу, получим

(23)

Или

Обозначая написанное отношение через , придем к (22).

Если функция в промежутке непрерывна, то обычным путем убеждаемся в том, что есть значение функции в некоторой точке этого промежутка, интеграл формула (22) приобретает вид

, где (24)

В практике интегралов Стилтьеса наиболее важным является случай, когда функция непрерывна, а функция имеет ограниченное изменение. Для этого случая справедлива такая оценка интеграла Стилтьеса:

(25)

Где

.

Действительно, для суммы Стилтьеса будет

так что остается лишь перейти к пределу, чтобы получить требуемое неравенство.

Отсюда вытекает, в частности, и оценка близости суммы к самому интегралу Стилтьеса (при прежних предположениях относительно функций и ). Представив и в виде

и почленно вычитая эти равенства, получим

Если, как обычно, обозначить через колебание функции в промежутке , так что

для

то, применяя оценку (25) к каждому интегралу в отдельности, будем иметь

Если промежуток раздроблен на столь мелкие части, что все , где - произвольное наперед взятое число, то заключаем, что

(26)

Эти оценки будут нами использованы в следующем пункте.