Интегрирование и дифференцирование интегралов, зависящих от параметра

курсовая работа

3.3 Вывод формулы Коши

Пусть функция является аналитической в односвязной области , ограниченной контуром . Возьмем произвольную внутреннюю точку и построим замкнутый контур , целиком лежащий в и содержащий точку внутри себя. Рассмотрим вспомогательную функцию

(21)

Функция , очевидно, является аналитической функцией всюду в области , за исключением точки . Поэтому, если мы в области возьмем такой замкнутый контур , лежащий внутри , чтобы точка попала внутрь области, ограниченной контуром , то функция будет аналитической в двухсвязной области , заключенной между контурами и . Согласно теореме Коши интеграл от функции по кривой равен нулю:

Изменив направление интегрирования во втором интеграле, это равенство можно переписать в виде

(22)

Поскольку интеграл, стоящий слева, не зависит от выбора контура то этим свойством обладает и интеграл, стоящий справа. Для дальнейших рассмотрений удобно в качестве контура интегрирования выбрать окружность некоторого радиуса с центром в точке (Рис. 1). Положив ,имеем.

Последний интеграл преобразуем следующим образом:

(23)

Устремим теперь к нулю. Так как - аналитическая, а следовательно, непрерывная функция в области , то для любого положительного числа можно указать такое значение , что для . Отсюда следует, что при существует предел

Так как в формуле (23) последнее слагаемое не зависит от то

, а следовательно и согласно (22)

(24)

Интеграл, стоящий в правой части, выражает значение аналитической функции в некоторой точке через ее значения на любом контуре , лежащем в области аналитичности функции и содержащем точку внутри. Этот интеграл и называется интегралом Коши. Формула (24) часто называется формулой Коши.

Замечание 1. В формуле (24) интегрирование производится по замкнутому контуру , целиком лежащему в области аналитичности функции и содержащему внутри точку . При дополнительном условии непрерывности в замкнутой области аналогичная формула имеет место в силу теоремы 6 (стр. 56) и при интегрировании по границе области .

Замечание 2. Проведенные рассмотрения остаются справедливыми и в случае многосвязной области . При этом для вывода основной формулы (24) следует рассматривать такой замкнутый контур , который может быть стянут к точке , все время оставаясь в области . Тогда легко показать, что при условии непрерывности функции в замкнутой области с кусочно-гладкой границей формула (24) остается справедливой при интегрировании в положительном направлении по полной границе данной многосвязной области.

3.2 Следствия из формулы Коши

Сделаем ряд замечаний по поводу формулы (24).

1. Интеграл вида по замкнутому контуру целиком лежащему в области аналитичности функции , имеет смысл для любого положения точки на комплексной плоскости при условии, что эта точка не лежит на контуре . При этом, если точка лежит внутри , то значение интеграла равно ; если точка лежит вне , значение интеграла равно нулю, поскольку в этом случае подынтегральная функция является аналитической всюду внутри . Итак,

(25)

При интеграл в обычном смысле не существует, однако при дополнительных требованиях на поведение функции на контуре этому интегралу может быть придан определенный смысл. Так, если функция удовлетворяет на контуре условию Гёльдера*

то существует главное значение по Коши интеграла

где представляет собой часть контура , лежащего вне круга . При этом

2. Пусть - аналитическая функция в односвязной области и - некоторая внутренняя точка этой области. Опишем из этой точки как из центра окружность радиуса , целиком лежащую в области . Тогда по формуле Коши получим

Но на окружности , поэтому

(26)

Или

(27)

Эта формула носит название формулы среднего значения и выражает значение аналитической функции в центре окружности как среднее из ее граничных значений.

3. Принцип максимума модуля аналитической функции. Пусть функция является аналитической в области и непрерывной в замкнутой области . Тогда или , или максимальные значения достигаются только на границе области.

Действительная функция двух действительных переменных

по условию является непрерывной в замкнутой области. Поэтому она достигает своего максимального значения в какой-либо точке данной области. То есть

(28)

Предположим, что точка - внутренняя точка области . Построим в области круг некоторого радиуса с центром в точке и запишем формулу среднего значения для и .

Учитывая формулу (28), получим

.

Следовательно,

(29)

Из этого соотношения в силу непрерывности функции на контуре интегрирования и неравенства (28) следует, что

.(30)

Действительно, по (28) функция не может быть больше ни в одной точке контура интегрирования. Если мы предположим, что в какой-либо точке контура интегрирования функция строго меньше , то из непрерывности следует, что строго меньше и в некоторой окрестности точки , т. е. можно указать отрезок интегрирования, на котором

.

Тогда

что противоречит (29). Итак, соотношение (30) действительно имеет место. Это означает, что на окружности радиуса с центром в точке функция имеет постоянное значение, равное своему максимальному значению в области . То же будет иметь место и на любой окружности меньшего

радиуса с центром в точке , а следовательно, и во всем круге . Теперь легко показать, что это же значение функция имеет и в любой другой внутренней точке области . Для этого соединим точки и кривой , целиком лежащей в области и отстоящей от ее границы не меньше чем на некоторое положительное число . Возьмем точку , являющуюся последней общей точкой кривой и круга (Рис. 2). Поскольку , то, повторяя проведенные выше рассуждения, покажем, что внутри круга с центром в точке радиуса модуль функции принимает постоянное значение, равное максимальному значению . Взяв на кривой точку , являющуюся последней общей точкой кривой и круга , и продолжая данный процесс, мы в результате конечного числа шагов получим, что внутри круга , которому принадлежит точка , имеет место равенство , что и доказывает высказанное утверждение.

Итак, мы показали, что если принимает максимальное значение в некоторой внутренней точке области, то во всей области.

Таким образом, если функция не является постоянной величиной в области , то она не может достигать своего максимального значения во внутренних точках . Но так как функция, непрерывная в замкнутой области, достигает своего максимального значения в какой-либо точке этой области, то в последнем случае функция должна достигать своего максимального значения в граничных точках.

В качестве последнего замечания отметим, что если аналитическая в области функция не равна нулю ни в одной точке этой области и непрерывна в , то имеет место принцип минимума модуля этой функции. Для доказательства этого утверждения достаточно рассмотреть функцию и воспользоваться принципом максимума модуля этой функции.

Заключение

Данная работа посвящена теме «Теория и решение интегралов зависящих от параметра».

В ходе работы были выполнены следующие задачи

1. Была подобрана и изучена литература по теме «интегралы, зависящие от параметров»;

2. были изучены интегралы Коши;

3. была рассмотрена аналитическая функция.

В дипломной работе будет обобщен весь теоретический материал собранный и изученный ранее.

интеграл кривая преобразование формула

Список литературы

1) Берман Г.Н. Сборник задач по курсу математического анализа: учеб.-практ. Пособие/ Г.Н. Берман. - СПб.: Профессия, 2001.

2) Зорич, В.А. Математический анализ: в 2 т./ В.А. Зорич. - М.: Наука, 1984.

3) Колмогоров, А.Н., Фомин, С.В. Элементы теории функций и функционального анализа/ А.Н. Колмогоров, С.В. Фомин. - М.: Наука, 1976.

4) Ляшко, И. И. Боярчук, А. К. Гай, Я. Г. Головач, Г. П. Математический анализ: в 3 т. Т. 3.Кратные и криволинейные интегралы/ И.И Ляшко, А.К. Боярчук, Я.Г. Гай, Г.П. Головач. - М.: Едиториал УРСС, 2001.

5) Никольский, С.М. Математический анализ: в 2 т./С.М. Никольский. - М.: Наука, 1973.

6) Свешникова, А. Г., Тихонов, А.Н. Курс высшей математики и Математической физики/ А. Г. Свешникова, А.Н.Тихонов. - М.: ФИЗМАТЛИТ, 2001.

7) Сидоров, Ю.В., Федорюк, М.В., Шабунин, М.И. Лекции по теории функции комплексного переменного/ Ю.В.Сидоров, М.В. Федорюк, М.И. Шабунин. - М.: Наука, 1989.

8) Соболев, В. И. Лекции по дополнительным главам математического анализа/ В.И. Соболев. - М.: Наука,1968.

9) Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления/ Г.М. Фихтенгольц. - М.:Физматгиз,1962.

10) Шерстнев, А. Н. Конспект лекций по математическому анализу/ А.Н. Шерстнев. - М., 2003.

Делись добром ;)