Інтеграл Стілтьєса

курсовая работа

§1. Визначення інтегралу Стілтьєса

Інтеграл Стілтьєса (Th.J. Stieltjes Томас Іоанес Стілтьєс (нідерл. Thomas Joannes Stieltjes, 29.12.1856, -- 31.12.1894 Тулуза) -- нідерландський математик.

Запрпонував у 1894 р. узагальнення визначеного інтегралу (Інтеграл Рімана-Стілтьеса). Член-кореспондент Петербурзької Академії наук (1894).) - є безпосереднім узагальненням звичайного інтегралу Рімана. Визначається він наступним чином:

Нехай на проміжку [a,b] задані дві обмежені функції f(x) і g(x). Розкладемо точками

(1)

проміжок [a,b] на частини і покладемо . Обравши у кожній з частин [] (i=0,1,…,n-1) за точкою обрахуємо значення функції f(x) і помножимо його на відповідний проміжку [] приріст функції g(x)

Нарешті, складемо суму всіх таких добутків:

(2)

Ця сума має назву суми Стілтьєса.

Скінченна границя суми Стілтьєса , коли прямує до нуля називається інтегралом Стілтьєса функції f(x) no функції g(x) и позначається символом

(3)

Іноді, коли необхідно підкреслити, що інтеграл розглядається у сенсі Стілтьєса, вживають позначення

(S) або

Границя тут розуміється в тому ж сенсі, що і у випадку зі звичайним визначеним інтегралом. Точніше кажучи, число I називається інтегралом Стілтьєса, якщо для будь-якого числа > 0 існує таке число >0, що як тільки проміжок [a,b] розбитий на частини так, що , одразу ж виконується нерівність , яким би чином не обиралися точки у відповідних проміжках.

При існуванні інтеграла (3) також говорять, що функція на проміжку інтегровна по функції . Очевидно, що єдина відміна даного визначення від звичайного визначення інтегралу Рімана полягає в тому, що множиться не на приріст незалежної змінної, а на приріст другої функції. Таким чином, інтеграл Рімана є частковим випадком інтегралу Стілтьєса, коли в якості функції взято саму незалежну змінну : = [1;8]

Делись добром ;)