logo
Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка

2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.28) - (1.31)

Будем проводить наше исследование в предположении, что , , .

Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.28) - (1.31), тогда система (1.1) запишется в виде:

(2.1)

Интегральные кривые в этом случае имеют вид:

(2.2)

(2.3)

Найдем состояния равновесия системы (2.1). Приравняв правые части системы нулю и исключив переменную y, получим следующее уравнение для определения абсцисс состояний равновесия:

(2.4)

Из (2.4) получаем, что

, , , .

Ординаты точек покоя имеют вид:

, , , .

Итак, имеем точки

, , , .

Исследуем поведение траекторий в окрестностях состояний равновесия , , , .

Исследуем точку .

Составим характеристическое уравнение в точке .

Отсюда

(2.5)

Следовательно, характеристическое уравнение примет вид:

==0.

,

Или

.

Характеристическими числами для точки системы (2.1) будут

.

Корни - действительные, различных знаков не зависимо от параметра d. Следовательно, точка - седло.

Исследуем точку

.

Составим характеристическое уравнение в точке

.

Согласно

равенствам (2.5) характеристическое уравнение примет вид:

,

Или

.

Характеристическими числами для точки системы (2.1) будут

,

то есть

, .

Корни - действительные и одного знака, зависящие от параметра d. Если d0, то точка

-

неустойчивый узел, если d0, то точка

-

устойчивый узел.

Исследуем точку .

Применяя равенства (2.5), составим характеристическое уравнение в точке

:

Характеристическими числами для точки

системы (2.1) будут

,

то есть

, .

Корни - действительные и одного знака, зависящие от параметра d. Если d0, то точка - устойчивый узел, если d0, то точка - неустойчивый узел.

Исследуем точку

.

Составим характеристическое уравнение в точке

.

Применяя равенства (2.5), получим:

,

Или

Характеристическими числами для точки

системы (2.1) будут

,

то есть

, .

Корни - действительные и различных знаков не зависимо от параметра d. Значит, точка

-

седло.

Исследуем бесконечно - удаленную часть плоскости в конце оси oy. Преобразование

[7]

переводит систему (2.1) в систему:

(2.6)

где .

Для исследования состояний равновесий на концах оси y, нам необходимо исследовать только точку . Составим характеристическое уравнение в точке.

Получим, что

Корни - действительные и одного знака. Следовательно, точка - устойчивый узел.

Исследуем бесконечно - удаленную часть плоскости вне концов оси oy преобразованием [7] Это преобразование систему (2.1) переводит в систему:

(2.7)

где .

Изучим бесконечно - удаленные точки на оси U, то есть при z=0. Имеем:

Получаем, что . Следовательно, состояний равновесия вне концов оси oy нету.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.

Таблица 1.

d

?

x=0

(-?; 0)

седло

неуст. узел

уст. узел

седло

уст. узел

(0; +?)

седло

уст. узел

неуст. узел

седло

уст. узел

Положение кривых (2.2), (2.3) и расположение относительно их состояний равновесия при d0 и d0 дается соответственно рис.1 (а, б).

Поведение траекторий системы в целом при d0 и d0 дается рис.4 (а, б) приложения А: Поведение траекторий системы (2.1).

Исследуя вид кривых (2), (2.3) и расположение относительно их состояний равновесия, убеждаемся, что система (2.1) не имеет предельных циклов, так как Воробьев А.П. [5] доказал, что для систем, правые части которых есть полиномы второй степени, предельный цикл может окружать только точку типа фокуса. Учитывая расположение состояний равновесия относительно кривых (1.3) и (1.13), являющиеся интегралами системы (2.1), характер состояния, заключаем, что для системы (2.1) не может существовать предельных циклов, окружающих несколько состояний равновесия.

а (d0)

б (d0)

Рис. 1