Клеточные пространства

курсовая работа

2.3 Многообразия Грассмана

Описываемое ниже клеточное разбиение многообразий Грассмана очень важно для геометрии и топологии (особенно для теории характеристических классов). Составляющие его клетки называются клетками Шуберта, а само оно называется шубертовским.

Пусть - произвольная конечная (возможно, пустая) невозрастающая последовательность целых положительных чисел, не превосходящих k, причем s ? n - k. Обозначим через e () подмножество пространства G (n,k), составленное из подпространств пространства R, удовлетворяющих следующим условиям (мы полагаем =0):

R при m ? k - m;

codim ( R) =о при ;

R при m ? k + s + 1

(мы считаем, что Ra R при a < b: ). Приведем другое, более простое описание множества e (). Напомним, что диаграмма Юнга набора - это фигура, которая рисуется на клетчатой бумаге, как показано на рис.4а (столбцы имеют длины ).

Число клеток диаграммы Юнга равно . Можно считать, что клетки пространства G (n,k) отвечают диаграммам Юнга, вмещающимся в прямоугольник k (n - k) (рис.4а). Рассмотрим диаграмму Юнга набора и расположим ее, как показано на рис.4б. Толстая линия на этом рисунке представляет собой график некоторой неубывающей функции, и множество e () задается условием dim (R) = (m). Ввиду наличия такого простого описания, множество e () обозначают иногда через е (), где - обозначение для диаграммы Юнга набора (). Еще раз заметим, что размерность клетки е () равна числу клеток диаграммы.

Лемма. Множество e () гомеоморфно R.

Доказательство. Расчленим диаграмму Юнга набора (), как показано на рис.4в. Поставим в клетках вдоль косых линий единицы, в Заштрихованные клетки - произвольные числа и в остальные места - нули. Получится kn-матрица, строки которой составляют базис некоторого k-мерного подпространства пространства R. Легко понять, что это подпространство принадлежит e () и что всякое подпространство, принадлежащее e (), обладает единственным базисом указанного вида. Получаем параметризацию клетки e () наборами из чисел (числа в заштрихованных клетках).

Рис.4

На самом деле верно больше: множества e () составляют клеточное разбиение пространства G (n, k). Для доказательства нужно построить характеристические отображения, т.е. продолжить построенные гомеоморфизмы IntR e () до непрерывных отображений G (n, k), отображающих сферу в объединение клеток меньших размерностей.

Замечательное свойство шубертовских клеток состоит в том, что при естественных вложениях G (n, k) в G (n+1, k) ив G (n+1, k+1) клетка e () гомеоморфно накладывается на клетку того же наименования. Следовательно, пространство G (,k) разбивается на клетки Шуберта, отвечающие диаграммам Юнга, содержащимся в горизонтальной полуполосе высоты k, а пространство G (,) разбивается на клетки, отвечающие всем без исключения диаграммам Юнга. Во всех случаях размерности клеток равны числам клеток диаграмм Юнга.

Комплексные и кватернионные аналоги шубертовских клеток очевидны; разумеется, размерности комплексных и кватернионных аналогов клеток Шуберта соответственно в 2 и 4 раза превосходят числа клеток соответствующих диаграмм Юнга.

Делись добром ;)