Клеточные пространства

курсовая работа

3.5 Первые применения теоремы о клеточной аппроксимации

Теорема. Если X - клеточное пространство с единственной вершиной (= нульмерной клеткой), не имеющее других клеток размерности <q, a Y - клеточное пространство размерности <q, то всякое отображение YX гомотопно отображению, переводящему все Y в точку. Такое же утверждение справедливо в категории пространств с отмеченными точками (в клеточной ситуации удобно считать, что отмеченными точками являются нульмерные клетки).

Это прямо следует из теоремы о клеточной аппроксимации: если f: Y X - клеточное отображение, то так как q-й остов пространства Y есть все Y, а q-й остов пространства X есть точка, то f (Y) - точка.

В частности, если m < q, то (Sm, Sq) = b (Sm, Sq) = 0 (т.е. состоит из одного элемента).

Оп ределение. Пространство X называется n-связным, если при q ? n множество (Sq, X) состоит из одного элемента (т.е. если любые два отображения Sq X с q ? n гомотопны).

Теорема. Всякое п-связное клеточное пространство гомотопически эквивалентно клеточному пространству с единственной вершиной и без клеток размерностей 1, 2,..., n.

Доказательство. Выберем в нашем пространстве X вершину е0 и соединим с ней остальные вершины путями. Это можно сделать, так как пространство n-связно и, в частности, линейно связно. (Пути могут пересекаться) Используя теорему о клеточной аппроксимации, мы можем добиться того, чтобы эти пути лежали в одномерном остове пространства X. Пусть si - путь, соединяющий вершину е0 с вершиной еi. Приклеим при каждом i к X двумерный диск по отображению нижней полуокружности в X при помощи пути si (рис.10).

Рис.10

Получим новое клеточное пространство X, которое будет содержать X и, кроме того, клетки е, е (верхние полуокружности и внутренности приклеенных писков). То, что границы клеток е лежат в одномерном остове, вытекает из того, что этим свойством обладают пути si. Ясно, что X есть деформационный ретракт в : каждый Фприклеенный диск можно смять на нижнюю полуокружность.

Обозначим через Y объединение замыканий клеток еi1. Очевидно, Y стягиваемо; следовательно, /Y ~ ~ X. Но у /Y всего одна вершина.

Дальнейшее рассуждение совершенно аналогично. Предположим, что X ~ X, причем X имеет единственную вершину и не имеет клеток размерностей 1,2,..., k - 1, где k?n. В этом случае замыкание каждой k-мерной клетки представ ляет собой k-мерную сферу. Ввиду n-связности X (и, следовательно, X) включение этой сферы в X продолжается до непрерывного отображения (k + 1) - мерного шара, образ которого, ввиду теоремы о клеточной аппроксимации, можно считать лежащим в (k + 1) - м остове пространства X. По этому отображению (которое мы считаем отображением нижней полусферы (k + 1) - мерной сферы) мы приклеиваем к X. шар Dk+2, и подобным образом мы поступаем для каждой k-мерной клетки пространства X. Полученное клеточное пространство гомотопически эквивалентно X и содержит стягиваемое подпространство Y - объединение замыканий всех вновь приклеенных (k + 1) - мерных клеток (верхних полусфер приклеенных шаров), содержащее все k-мерные клетки. Имеем: /Y ~ ~ X ~ X, /Y имеет единственную вершину и не имеет клеток размерностей 1,2,...,k.

Следствие. Если клеточное пространство X п-связно, а клеточное пространство Y n-мерно, то множество (Y, X) состоит из одного элемента. Это же верно для b (Y, X), если X и Y имеют отмеченные точки, являющиеся вершинами.

Замечание. Использованная в доказательстве последней теоремы процедура уничтожения k-мерных клеток предполагает присоединение клеток размерности k + 2. В случае, если заданное n-связное пространство было (n + 1) - мерно, это могло привести к увеличению размерности. В действительности можно доказать, что всякое n-связное клеточное пространство размерности n + 1 гомотопически эквивалентно букету (n + 1) - мерных сфер.

Последняя теорема имеет относительный вариант, для формулировки которого необходимо понятие n-связной пары. Топологическая пара (X, А) называется n-связной, если всякое отображение (Dn, Sn-1) (X, А) гомотопно (как отображение пар) отображению, загоняющему все Dn в А.

Делись добром ;)