Комплексные числа: их прошлое и настоящее

курсовая работа

1. Основные понятия и арифметические действия над комплексными числами.

Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел, для которых следующим образом определены операции сложения и умножения:

(x1,y1)+(x2,y2)=(x1+x2, y1+y2); (1)

(x1,y1)•(x2,y2)=(x1•x2 - yiy2, xiy2 + x2y1). (2)

Действительные числа x и y называются при этом действительной и мнимой частями комплексного числа z=(x,y) и обозначаются символами Rez и Imz соответственно (real - действительный, imanginerum - мнимый).

Два комплексных числа z1=(x1,y1) и z2=(x2,y2) называются равными только в том случае, когда x1=x2 и y1=y2. Из определения следует, что всякое комплексное число (x,y) может быть представлено в следующем виде: (x,y)=(x,0)+(0,1)(y,0). (3)

Числа вида (х,0) отождествляются с действительными числами х, т.е. (х,0)=х, число (0,1), называемое мнимой единицей, обозначается символом i, т.е. (0,1)=i, причем i2=-1, равенство (3) принимает вид z=x+iy и называется алгебраической формой записи комплексного числа z=(x,y).

Операции сложения и умножения комплексных чисел имеют следующие свойства:

а) z1+z2=z2+z1 (переместительный закон или коммутативность сложения и умножения)

б) z1z2=z2z1

в) z1+(z2+z3)=(z1+z2)+z3 (сочетательный закон или ассоциативность)

г) z1(z2z3)=(z1z2)z3

д) (z1+z2)z3=z1z3+z2z3 (распределительный закон или дистрибутивность)

Вычитание и деление комплексных чисел z1=x1+iy1 и z2=x2+iy2 определяют, причем однозначно, их разность z1-z2 и частное z1/z2 как решения соответствующих уравнений z+z2=z1 и zz2=z1 (при z2?0). Отсюда следует, что разность и частное от деления z1 на z2 вычисляются по формулам:

z1-z2=(x1-x2)+i(y1-y2), (4)

z1/z2=(x1x2+y1y2)/(x22+y22) + i((y1x2-x1y2)/(x22+y22)) (5)

Данное определение можно выразить в других терминах, а именно, вычитание - как действие, обратное сложению: z=z1+(-z2), где число (-z2) называется противоположным z2; деление - как действие, обратное умножению: z=z1(z2-1), где z2-1 - число, обратное для z2 (z2?0). Таким образом, анализ определений и свойств арифметических операций над комплексными числами приводит к следующим выводам:

- множество комплексных чисел (С) является расширением множества R действительных чисел, т.е. действительные числа содержатся как частный случай, среди комплексных (точно так же как, например, целые числа содержатся среди действительных);
- комплексные числа можно складывать, вычитать, умножать и делить по правилам, которым подчиняются действительные числа, заменяя в итоге (или в процессе вычислений) i2=-1.

Делись добром ;)