Математическая модель системы слежения РЛС

дипломная работа

1.4 Постановка задачи и способы решения

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной, а время -- минимальным.

В настоящее время эту проблему решает теория автоматического управления на базе стандартных регуляторов. Примером может служить широко распространенный ПИД-регулятор, на базе которого решается большой круг задач. Во многих случаях результаты, получаемы при использовании этих устройств, удовлетворяют потребностям управления. Там где не требуется очень высокое быстродействие или ограничения, накладываемые конструктивными особенностями и характеристиками реальных объектов на вид и характер переходного процесса не являются очень строгими возможно применять данные устройства.

Но с течением времени, в связи с развитием науки и техники инструменты производства все более усложняются, повышаются и требования к качеству управления. Под качеством понимается не только точность, но и быстродействие. Также возникают ситуации, в которых управление выработанное стандартными устройствами не может быть реализовано в полной мере из-за тех или иных технических характеристик объектов управления. Для удовлетворения современным запросам управления промышленные регуляторы совершенствуются и усложняются, что дает некоторый положительный результат, но приводит также и к нежелательным последствиям. А именно -- с усложнением конструкции уменьшается надежность данного устройства и растет его стоимость, что, в свою очередь, тормозит внедрение его в производство.

Примером не адекватной работы устройств на базе стандартных регуляторов могут служить системы имеющие ограничения на управление. В такой ситуации, система в целом оказывается существенно нелинейной и классические приемы управления в этом случае не приемлемы и для достижения положительных результатов необходимо применять принципиально новые теории и законы, на базе которых можно получить такой вид регуляторов, который удовлетворял бы всем поставленным условиям и требованиям.

Целью данной работы является создание математической модели устройства, позволяющего адекватно управлять объектом при наличии ограничений на управление, причем главным условием ставится минимизация времени переходного процесса системы. Предполагается, что наиболее успешным и перспективным решением такого рода задач будет решение на базе теории принципа максимума Понтрягина.

В данной работе рассматривается радиолокационная установка, которая представляет собой совокупность как минимум двух синхронно вращающихся антенн, приводимых в движение электроприводами. В данной системе существует ведущий электропривод, который задает параметры вращения, и ведомый, который должен в точности повторять траекторию движения ведущего.

Предполагается, что тип двигателей, приводящих в движение эти антенны, не имеет для данной работы особого смысла. Сделаем следующее допущения: в данной системе есть возможность измерять в каждые заданные моменты времени положение ведущей антенны, т.е. есть возможность получать информацию о траектории ведущей антенны. Таким образом в связи со сделанными допущениями, система представляет собой совокупность двух электроприводов.

Ставится следующая задача: ведомый двигатель должен двигаться синхронно с ведущим. Система должна отрабатывать заданную траекторию с необходимой точностью и максимальным быстродействием.

В начальный момент времени оба двигателя могут быть рассинхронизированы. Конкретизируем задачу: необходимо за минимальный промежуток времени вывести ведомый двигатель на траекторию ведущего, причем в конце переходного процесса должны совпадать не только угол , но также и скорость , т. е., другими словами, ведомый двигатель попав на нужную траекторию, должен находиться на ней. Главным условием ставится минимизация времени переходного процесса. Таким образом ставится задача оптимально быстродействия.

Достижение указанной цели обусловлено решением следующих задач:

1. Построение оптимального программного управления системы слежения РЛС;

1.1. Построение оптимизационного функционала;

1.2. Вычисление точек переключения;

1.3. Нахождение оптимальных траекторий;

2. Моделирование полученной системы управления;

3. Проверка сделанных гипотез.

Предполагается, что процесс управления будет иметь циклический характер, так как в результате одного шага управления координаты ведущего и ведомого двигателей будут совпадать с некоторой погрешностью, которая в свою очередь будет являться начальными данными для следующего шага управления и т.д.

Запишем поставленную цель управления в виде:

(1.12)

где -- J, T -- целевые функционалы по ошибке и времени; -- выходные координаты ведомого двигателя; -- выходные координаты ведущего двигателя.

Выходные координаты ведущего двигателя в данном случае являются заданием.

Как было сказано выше, в реальных системах всегда существуют ограничения на управление, обусловленные техническими особенностями реальных объектов. В данном случае -- это ограничение на напряжение якоря двигателя. Эти условия представляют собой ограничения на величину и на скорость изменения управляющего параметра U. Таким образом эти ограничения выделяют в пространстве управлений некоторое подпространство, называемое, как было сказано выше, областью управления. Область управления представляет собой r-мерный параллелепипед.

В теории принципа максимума было доказано, что управление будет оптимальным в случае движения по граням параллелепипеда области управления. В нашем случае областью управления является прямоугольник, так как множество управлений представляет собой пространство R2. Управление будет представлять собой кусочно-непрерывную функцию.

Движение системы в фазовом пространстве должно проходить по оптимальным траекториям. Оптимальной траектория будет лишь в случае приложения оптимального управления, характер которого описан выше.

Для отыскания оптимального перехода в смысле быстродействия необходимо получить множество оптимальных траекторий. Это множество является общим решением системы уравнений, описывающих объект, при приложенном оптимальном управлении. Вид этих кривых будет описан ниже в главе 2.

Будем решать задачу в базисе ошибок.

Задавшись выражением (1.13)

(1.13)

где -- выходные координаты ведомой системы, -- выходные координаты ведущей системы, являющиеся заданием, -- ошибка и скорость ошибки, можно сформулировать задачу в базисе ошибки: за минимальный промежуток времени вывести ошибку и ее производную в нуль.

Так как оптимальное управление имеет вид кусочно-непрерывной функции имеющей точки переключения, то движение системы в базисе ошибок будет проходить по кривым, имеющим конечное число точек переключения (а соответственно и интервалов постоянства), соответствующим точкам переключения управляющего параметра. Таким образом возникает проблема нахождения моментов времени, в которые необходимо изменить значение (переключить) управляющего параметра.

Таким образом общая задача сводится к нахождению области управления, нахождению вида оптимальных траекторий и вычисление моментов времени точек переключения управляющего параметра.

В результате решения общей задачи, сформулированной выше, должен быть получен общий алгоритм функционирования системы оптимального управления, который необходимо оптимизировать для использования в микроконтроллерах.

Делись добром ;)