1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром
Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных:
или, в векторной форме
где -- малый положительный параметр, -- неизвестные функции времени t, характеризующие данную систему.
В работах (х) -- (5) находится асимптотика решений системы (1.1) в случае, когда при каждом z любое решение системы «быстрых движений» **
при приближается либо к устойчивому положению равновесия, либо к устойчивому предельному циклу.
Но возможны случаи, когда система «быстрых движений» (1.2) может не иметь асимптотически устойчивых положений равновесия и изолированных предельных циклов. Такова, например, гамильтонова система. Целью настоящей работы и является изучение этих случаев. Так, в § 2 с точностью до величин порядка О (г) находится решение системы (1.1), для которой соответствующая система «быстрых движений» гамильтонова и к = 2, т. е. находится решение системы
Асимптотические формулы для решения этой системы находятся для области, где траектории соответствующей гамильтоновой системы «быстрых движений» при каждом векторе z замкнуты (в случае невырожденного центра в рассматриваемую область включается и сам центр). Метод исследования системы (1.3) таков: сначала рассматривается система «быстрых движений» (1.4), а затем система (1.3) после соответствующей замены переменных усредняется вдоль решений (1.4). Оказывается, что уравнение с малым параметром и. при старшей производной и с пропущенной в основном члене Q (п -- 1)-й производной, исследованное В.М. Волосовым (при п -- 2 -- в работе (12Г), при F ~ О -- в работах (8) -- (п)) методом конечных разностей, является частным случаем системы (1.3). Поэтому результаты работ (8) -- (12) (эти результаты сформулированы в § 3 настоящей работы) следуют из результатов § 2.
Метод построения решения уравнения (1.5) при п = 2 с любой наперед заданной точностью в случае, когда известно общее решение (в форме разложения в тригонометрический ряд Фурье) соответствующего невозмущенного уравнения был дан в работе Ю.А. Митрополъским.
Задача исследования системы (1.3) с точки зрения работ (3) -- (4) и вывода из нее известных результатов В.М. Волосова [работы (8) -- (12)] относительно уравнения (1.5) была поставлена Л.С. Понтрягиным в его докладе на семинаре В.И. Смирнова в Ленинграде в середине апреля 1957 г.
Выражаю глубокую благодарность Л.С. Понтрягину за ценные указания, советы и постоянное внимание к настоящей работе.
- Ведение
- Применения регулярного возмущения
- 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром
- 1.1 Асимптотическое поведение решений системы
- 2. Регулярные возмущения.
- 2.1 Асимптотические методы
- 2.2 Регулярные возмущения решений задачи Коши для обыкновенных дифференциальных уравнений
- 2.3 Существование решении возмущенной задачи
- Литература
- Асимптотика решений уравнения Бесселя, нули функции Бесселя.
- Решение дифференциальных уравнений
- 2.2. Исследование асимптотики
- 5. Решение дифференциальных уравнений.
- Асимптотика решений уравнения Бесселя, нули функции Бесселя.
- Решение дифференциальных уравнений
- Решение дифференциальных уравнений
- 5.1.1 Асимптотика первого порядка
- Решение дифференциальных уравнений
- Оценки точности разностных схем для решения дифференциальных уравнений в частных производных