logo
Методика формирования умений решать уравнения и неравенства с параметрами в курсе основной общеобразовательной школе

1.1 Виды уравнений в школьном курсе математике

уравнение неравенство математика

Понятие «уравнение » относится к важнейшим общематематическим понятиям.

Существуют различные трактовки понятия «уравнение».

И.Я. Виленкин и др. приводит логико - математическое определение уравнения. Пусть на множестве М зафиксирован набор алгебраических операций, х - переменная на М; тогда уравнением на множестве М относительно x называется предикат вида , где и - термы относительно заданных операций, в запись которого входит символ .Аналогично определиться уравнение от двух и более переменных.

Принятые в логики термины «терм» и «предикат» соответствуют такие термины школьной математики как «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению можно считать следующее определение: «Предложение с переменной, имеющий вид равенства между двумя выражениями с этой переменной, называется уравнением». Такое определение приведено в учебнике «Алгебра и начала анализа» А.Н Колмогоров и др. Равенство с переменной называется уравнением. Значение переменной при котором равенство с переменной обращается в верное числовое равенство, называется корнем уравнения.

Часто, особенно в начале систематического курса алгебры, понятие уравнение вводится по средством выделение его из алгебраического метода решения задач. Например, в учебнике Ш.А.Алимова и др. понятие уравнение вводиться на материале текстовой задачи. Переход к понятию уравнения осуществляется на основе анализа некоторых формальных особенностей записи, выражающих содержание данной задачи в алгебраической форме: «Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением». Указываемый способ введения понятия уравнения соответствует еще одному компоненту понятия уравнения - прикладному.

Еще один подход к понятию уравнения получается при составления области определения уравнения и множества его корней. Например, в учебнике Д.К.Фадеева «Буквенное равенство, которое не обязательно превращается в верное числовое равенство при допустимых наборов букв, называется уравнение».

Можно встретить и третий вариант определения, роль которого проявляется при изучения графического метода решения уравнений: «Уравнение - это равенство двух функций».

Среди всех изучаемых в курсе математике типов уравнений В.И. Мишин выделяет сравнительно ограничение количество основных типов. к их числу относится: линейное уравнение с одним неизвестным, систему двух линейных уравнений с двумя неизвестными, квадратные уравнения, простейшие иррациональные и трансцендентные.

Ю.М.Колягин и др. классифицируют по виду функций, представляющих правую и левую части уравнений:

Уравнение называется:

алгебраическим, если и - алгебраические функции;

трансцендентным, если хотя одним из функций и трансцендентная;

рациональным алгебраическим (или просто рациональным) , если алгебраические функции и рациональные;

иррациональным алгебраическим( или просто иррациональным), если хотя бы одна из алгебраических функций и иррациональная;

целым рациональным, если функция и целые рациональные;

дробным рациональным, если хотя бы одна из рациональных функций и дробная рациональная.

Уравнение , где - многочлен стандартного вида, называется линейным (первой степени), квадратным( во второй степени), кубическим (третьей степени) и вообще - ой степени, если многочлен , имеет соответственно первую, вторую, третью и вообще - ую степень.

В школе изучаются несколько типов уравнений. К их числу относятся: линейные уравнения с одной не известной, квадратные уравнения, иррациональные и трансцендентные уравнения, рациональные уравнения. Эти типы уравнений изучаются с большой тщательностью, для них указывается и доводиться до автоматизма выполнение алгоритма решения, указывается форма, в котором должен записываться ответ.

Виды уравнений и методы решения:

1) Линейное уравнение

Уравнением с одной переменной, называется равенство, содержащее только одну переменную.

Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Найти все корни уравнения или доказать, что их нет - это значит решить уравнение.

Пример 1: Решить уравнение .

Решение:

;

;

;

;

;

Ответ:

2) Квадратное уравнение

Квадратное уравнение -- это уравнение вида , где коэффициенты a, b и c - любые действительные числа, причем а?0.

Корнями квадратного уравнения называют такие значения переменной, при которых квадратное уравнение обращается в верное числовое равенство.

Решить квадратное уравнение - значит найти все его корни или установить, что корней нет.

Пример 2: Решить уравнение

Решение:

Данное уравнение можно решить либо через Теорему Виета, либо через дискриминант.

D=9+8=1;

;

=-1;

.

Ответ: х1=-1, х2=-2.

3) Рациональные уравнения

рациональные уравнения - уравнения вида

,

где и многочлены, атак же уравнения вида , где и - рациональные.

Пример 3: Решить уравнение

Решение:

Ответ: .

4) Иррациональные уравнения

Иррациональные уравнения - это уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Пример 4: Решить уравнение

Возведем обе части в квадрат:

Ответ: .

5) Показательные и логарифмические уравнения

При решения показательных уравнений используются два основных метода: а) переход от уравнения к уравнению ;б) введения новых переменных. Иногда приходиться применять исскуственные приемы.

Логарифмические уравнения - решаются тремя методами, то есть переход от уравнения к уравнению - следствию ;метод введения новых переменных логарифмирования, то есть переход от уравнения к уравнению .

А так же во многих случаях при решения логарифмического уравнения приходиться использовать свойства логарифма произведения, частного, степени , корня.

1.2 Виды неравенств в школьном курсе

В целом изучение неравенств в школьном курсе математики организовано так же, как и уравнений.

Отметим ряд особенностей изучения неравенств.

1. Как и в случае уравнений отсутствует теория равносильности неравенств. Учащимся предлагаются её незначительные фрагменты, приведённые в содержании учебного материала.

2. Большинство приёмов решения неравенств состоит в переходе от данного неравенства a>b к уравнению а=b и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства. Например, такая ситуация возникает при решении рациональных неравенств методом интервалов, при решении простейших тригонометрических неравенств.

3. В изучении неравенств большую роль играют наглядно - графические средства.

Два выражения (числовые или буквенные), соединённые одним из знаков: «больше» (>), «меньше» (<), «больше или равно» (?), «меньше или равно» (?) образуют неравенство (числовое или буквенное). Любое справедливое неравенство называется тождественным.

В зависимости от знака неравенства мы имеем либо строгие неравенства ( > , < ), либо нестроги ( ? , ? ).

Буквенные величины, входящие в неравенство, могут быть как известными, так и неизвестными.

Решить неравенство - это найти границы, внутри которых должны находиться неизвестные, так чтобы неравенство было тождественным.

Основные свойства неравенств:

1. Если a < b, то b > a; или если a > b, то b < a .

2. Если a > b, то a + c > b + c; или если a < b, то a + c < b + c. То есть, можно прибавлять (вычитать) одно и то же число к обеим частям неравенства.

3. Если a > b и c > d, то a + c > b + d . То есть, неравенства одного смысла (с одинаковым знаком > или < ) можно почленно складывать.

4. Если a > b и c < d, то a - c > b - d . Или, если a < b и c > d, то a - c < b - d . То есть, неравенства противоположного смысла можно почленно вычитать одно из другого, и брать знак неравенства, являющегося уменьшаемым.

5. Если a > b и m > 0, то ma > mb и a/m > b/m . То есть, обе части неравенства можно умножить или разделить на одно и то же положительное число. Неравенство при этом сохраняет свой знак.

6. Если a > b и m < 0, то ma < mb и a/m < b/m . То есть, обе части неравенства можно умножить или разделить на одно и то же отрицательное число. Неравенство при этом меняет свой знак на обратный.

Неравенства, содержащие неизвестные величины, подразделяются на:

ѕ алгебраические;

ѕ трансцендентные;

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Пример:

Неравенство -- алгебраическое, первой степени.

Неравенство -- алгебраическое, второй степени.

Неравенство -- трансцендентное.

Виды неравенства и способы их решения:

1)Линейные неравенства

Пример 5: Решить неравенство

Решение:

Ответ: x<-2.

2) Квадратные неравенства

Пример 6: Решить неравенство х2> 4

Решение:

х2> 4

(х - 2)•(х + 2) > 0.

Решаем методом интервалов.

Рис. 1

Ответ:

3) Рациональные неравенства

Пример 7: Найти все целые значения, удовлетворяющие неравенству

Решение:

0;

Методом интервалов:

Рис. 2

Решение неравенства:

Целые числа, принадлежащие интервалу: -6;-5;-4;1.

Ответ:-6;-5;-4;1.

4) Иррациональные неравенства

Начинать решение иррациональных неравенств нужно с нахождения области определения.

Пример 8: Решить неравенство

Решение:

Область определения:

Так как арифметический корень не может быть отрицательным числом, то

-2?x<7.

Ответ: [-2;7)/

5) Показательные, логарифмические неравенства

Пример 9: Решите неравенство ..

Решение:

x

Ответ: x

Пример 10: Решите неравенство .

Решение:

;

+5x+1>1;

+5x>0;

x(2x+5)>0.

Ответ:.