Многомерная геометрия

дипломная работа

§ 4. Понятие точечно-векторного аффинного n-мерного пространства

В § 2 и § 3 были аксиоматически определены различные векторные пространства: линейные векторные, n-мерные векторные, евклидовы векторные. Но для построения геометрии, то есть для рассмотрения различных геометрических фигур, одних векторов недостаточно, нужны ещё точки.

Аксиоматизируя построение вектора по двум точкам, введём следующее определение.

Определение. Аффинным пространством называют некоторое множество А* элементов произвольной природы, называемых точками, для которого задано

а) некоторое векторное пространство V;

б) отображение, которое любым двум точкам А и ВА* ставит в соответствие некоторый вектор из V, обозначаемый АВ.

При этом требуется выполнение следующих аксиом:

15. Для любой точки АА* и любого вектора А из V существует единственная точка ВА* и любого вектора аV существует единственная точка ВА*, такая что АВ=а.

16. Для любых трёх точек А, В, СA* имеет место равенство АВ+ВС=АС.

Аксиома 15 называется аксиомой откладывания вектора от точки, а аксиома 16 - аксиомой треугольника, из которой следует правило треугольника и правило параллелограмма сложения векторов.

Размерность пространства V называется размерностью соответствующего аффинного пространства А* и обозначается символом А*n.

Отметим некоторые важные следствия из аксиом 15-16.

При любом выборе точки А вектор АА нулевой.

Если АВ=0, то точки А и В совпадают.

Для любых точек А и В АВ = - ВА.

Если АВ=СD, то АС=ВD.

Для произвольных точек А1, А2,…, Аn выполняется равенство А1А2+ А2А3+ Аn-1Аn= А1Аn (правило многоугольника сложения векторов).

Пространство А*n содержит бесчисленное множество точек.На основе аксиом 1-10 и 15-16 аффинной геометрии нельзя ввести понятий длин отрезков и величин (мер) углов. Эти понятия можно ввести, используя скалярное произведение векторов.

Как известно, введение в Vn скалярного произведения векторов приводит к евклидову векторному пространству Еn.

Определение. Аффинное пространство Аn*, в котором соответствующее ему векторное пространство Vn превращено в евклидово векторное пространство Еn, называется евклидовым n-мерным пространством.

Для этого пространства введём обозначение Еn. Согласно определению ясно, что всякое аффинное пространство Аn* можно превратить в евклидово пространство Еn, задавая на векторном пространстве Vn скалярное произведение векторов, удовлетворяющее аксиомам 11-14 (§ 3).

Таким образом, в Еn выполняются аксиомы 1-16.

На основе аксиом евклидова пространства строится евклидова геометрия.

В евклидовой геометрии, очевидно, справедлива вся изложенная выше теория аффинной геометрии. Но пространство Еn обладает метрическими свойствами, которые следуют из аксиом скалярного произведения векторов и связаны с измерением длин отрезков и мер углов. Поэтому евклидову геометрию называют ещё метрической геометрией.

Метрические аксиомы позволяют установить метрику евклидова пространства, т. е. расстояния между его точками. Определим сначала модуль |a| вектора а как неотрицательный корень из его квадрата, т. е.

(4.1)

Векторы, модуль которых равен 1, будем называть единичными векторами; единичный вектор будем обозначать а0.

Будем считать расстоянием между точками А и В модуль вектора АВ; будем обозначать это расстоянием АВ.

Таким образом, расстояние АВ между точками А(х) и В(y) определяется соотношением

(4.2)

Из определения расстояния следует, что

Расстояние симметрично, т. е.

АВ=ВА (4.3)

Расстояние позитивно, т. е. (4.4) AB ? 0, причём знак равно имеет место только при совпадении точек А и В.Покажем, что для расстояний между точками евклидова пространства помимо свойств 1 и 2 выполняется также «неравенство треугольника».расстояние между всякими двумя точками не более суммы расстояний между этими точками и третьей точкой, т. е.

АС ? АВ + ВС (4.5)

Множество точек, для всяких двух точек А и В которого определено число АВ, удовлетворяющего условиям 1-3, называется метрическим пространством.Для доказательства неравенства треугольника докажем так называемое неравенство Коши

(4.6) Скалярный квадрат вектора a - tb неотрицателен при любом вещественном t

, т. е. .

В случае b = 0 обе части неравенства (4.6) равны 0, т. е. неравенство выполняется автоматически.

Если , получим .

Тогда неравенство примет вид

, т. е. ,

что равносильно неравенству (4.6). Рассмотрим три точки А(х), В(у) и С(z). Тогда Рис. 1

Но в силу неравенства Коши . Поэтому , откуда получаем неравенство (4.5). Глава II. Многомерные геометрические образы в n-мерных пространствах

Делись добром ;)