logo
Нестандартные методы решения задач по математике

4. Методы, основанные на монотонности функций

При решении уравнений типа в ряде случаев весьма эффективным является метод, который использует монотонность функций и . Если функция непрерывна и возрастает (убывает) на отрезке , а функция непрерывна и убывает (возрастает) на этом же отрезке, то уравнение на отрезке может иметь не более одного корня.

Напомним, что функция называется возрастающей (или убывающей) на отрезке , если для любых , , удовлетворяющих неравенствам , выполняется неравенство (соответственно, ). Если функция является на отрезке возрастающей или убывающей, то она называется монотонной на этом отрезке.

В этой связи при решении уравнения необходимо исследовать функции и на монотонность, и если одна из этих функций на отрезке убывает, а другая функция --- возрастает, то необходимо или попытаться подбором найти единственный корень уравнения, или показать, что такого корня не существует. Если, например, функция возстает, a убывает для и при этом , то корней уравнения среди нет. Особенно такой метод эффективен в том случае, когда обе части уравнения представляют собой весьма ``неудобные для совместного исследования функции. Кроме того, если функция является монотонной на отрезке и уравнение (где --- некоторая константа) имеет на этом отрезке корень, то этот корень единственный.

Задачи и решения

Пример 20 Решить уравнение

Решение. Областью допустимых значений уравнения являются . Рассмотрим функции и . Известно, что функция для является убывающей, а функция --- возрастающей. В этой связи уравнение может иметь только один корень, т.е. , который легко находится подбором.

Ответ: .

Пример 21 Решить уравнение

Решение. Введем новую переменную . Тогда , и уравнение принимает вид

Уравнение имеет очевидный корень . Покажем, что других корней нет. Для этого разделим обе части уравнения на , тогда

Так как , а , то левая часть уравнения является убывающей функцией, а правая часть --- возрастающей функцией. Поэтому уравнение если имеет корень, так только один. Ранее было установлено, что --- корень уравнения . Следовательно, этот корень единственный.

Таким образом, имеем . Тогда единственным корнем уравнения является .

Ответ: .

Пример 22 Решить уравнение

Решение. Разделим обе части уравнения на , тогда

Подбором нетрудно установить, что является корнем уравнения . Покажем, что других корней это уравнение не имеет.

Обозначим и . Очевидно, что . Следовательно, каждая из функций и является убывающей и при этом .

Если , то , и .

Если , то , и .

Следовательно, среди 2 или корней уравнения нет.

Ответ: .