Оператор сдвига в гильбертовом пространстве

дипломная работа

5. Спектр оператора. Резольвента.

Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.

В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.

Пусть А - линейный оператор в n-мерном пространстве Еn . Число называется собственным значением оператора А , если уравнение имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения - регулярными.

Иначе говоря, есть регулярная точка, если оператор обратим. При этом оператор -1 , как и любой оператор в конечномерном пространстве, ограничен, поэтому в конечномерном пространстве существует две возможности:

уравнение имеет ненулевое решение, т. е. есть собственное значение для А , оператор -1 при этом не существует;

существует ограниченный оператор -1, т.е. есть регулярная точка.

В бесконечномерном пространстве существует третья возможность:

оператор -1 существует, т.е. уравнение имеет лишь нулевое решение, но этот оператор не ограничен.

Введем следующую терминологию. Число мы назовем регулярным для оператора А, действующего в (комплексном) линейном нормированном пространстве Е, если оператор -1 , называемый резольвентой оператора А , определен на всем Е и непрерывен. Совокупность всех остальных значений называется спектром оператора А . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то -1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых -1 существует, но не непрерывен, называется непрерывным спектром. Итак, любое значение является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра - существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.

Теорема 6 [3]. Если А -ограниченный линейный оператор в банаховом пространстве и , то - регулярная точка.

Доказательство.

Так как, очевидно , то . При этот ряд сходится (теорема 4), т.е. оператор имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле.

Теорема доказана.

Пример. В пространстве функций, непрерывных на отрезке , рассмотрим оператор А, определяемый формулой Аx(t)=M(t)x(t) , где M(t)- фиксированная непрерывная функция. Возьмем произвольное число , тогда , а .

Спектр рассматриваемого оператора состоит из всех , для которых Если функция M(t)- обращается в нуль при некотором t, заключенном между 0 и 1, то оператор не определен на всем пространстве , так как функция уже не обязана быть непрерывной. Если же функция M(t)- не обращается в нуль на отрезке , то функция непрерывна на этом отрезке, а, следовательно, ограничена: для некоторого при всех . Следовательно, оператор ограничен, а число - регулярное для оператора А. Таким образом, спектр оператора А есть совокупность всех значений функции M(t) на отрезке [0;1], причем собственные значения отсутствуют, т.е. оператор умножения на t представляет собой пример оператора с чисто непрерывным спектром.

Замечания

Любой ограниченный линейный оператор, определенный в комплексном банаховом пространстве, имеющем хоты бы один отличный от нуля элемент, имеет непустой спектр. Существуют операторы, у которых спектр состоит из единственной точки (оператор умножения на число).

Теорема 5 может быть уточнена следующим образом. Пусть (можно доказать, что этот предел существует для любого ограниченного оператора А), тогда спектр оператора А целиком лежит внутри круга радиуса r с центром в нуле. Величина r называется спектральным радиусом оператора А.

Резольвентные операторы и , отвечающие точкам и , перестановочны между собой и удовлетворяют соотношению , которое легко проверить, умножив обе части этого равенства на . Отсюда вытекает, что если - регулярная точка для А, то производная от по при =, т.е. , существует (в смысле сходимости по операторной норме) и равна .

Делись добром ;)