Векторные поля
3. Вращение векторного поля
Пусть задано плоское векторное поле А и дана ориентированная (то есть указано, в каком направлении она проходится) конечная линия L, не проходящая через особые точки поля. Тогда вращением поля А вдоль линии L называется деленный на 2p угол, на который поворачивается вектор А(М), когда точка M проходит линию L в соответствии с ее ориентацией. При этом поворот против часовой стрелки считается положительным, а по ней - отрицательным. Если же вектор вращается то в одну, то в другую сторону, то соответствующие углы поворота суммируются с их знаками (как если бы речь шла о заводе спиральной пружины). Будем обозначать вращение поля А вдоль линии L через g(L; А) или просто g(L), если ясно, о каком поле идет речь.
(Отметим еще, что общепринятый термин "вращение векторного поля" не совсем удачен: конечно, само поле А не вращается, вращается вектор А(М ), когда точка М движется.)
Приведем некоторые свойства вращения с краткими пояснениями.
1. При изменении ориентации линии L на противоположную значение g(L; А) умножается на -1.
2. Если линия L разбита на несколько частей, ориентированных в соответствии с ориентацией L, то вращение поля вдоль L равно сумме его вращений вдоль всех частей.
3. Если линия L замкнутая, то g(L; А) - целое число, не зависящее от того, какая точка на L была принята за начальную.
4. Если замкнутая линия L непрерывно деформируется так, что в любой момент процесса деформации она не проходит через особые точки поля, то вращение поля вдоль деформируемой линии остается неизменным.
Действительно, в той части плоскости, которую покрывает рассматриваемая линия в процессе деформации, направление вектора А(М ) непрерывно зависит от точки М. Поэтому если бы вращение поля вдоль линии менялось в процессе ее деформации, то это изменение было бы непрерывным. Но величина, меняющаяся непрерывно и принимающая только целочисленные значения (см. свойство 3), должна оставаться постоянной.
5. Если на замкнутой линии L и внутри нее нет особых точек поля А, то g(L; А) = 0.
В самом деле, выберем какую-либо точку M0 внутри линии L. Тогда эту линию можно путем непрерывной деформации стянуть к М0 , причем так, чтобы в каждый момент деформируемая линия не выходила за пределы области, ограниченной линией L. В силу свойства 4 в процессе деформации вращение поля вдоль линии остается неизменным. Но когда деформируемая линия окажется в достаточно малой окрестности неособой точки М0, то вектор поля не может сделать полный оборот, и потому вращение, будучи целым числом, равно нулю.