Полурешетки m-степеней
§1 Основные определения
Определение 1: (интуитивное).
Арифметическая функция называется частично рекурсивной, если существует алгоритм для нахождения ее значений.
Определение 2:
Под начальными функциями будем понимать следующие функции:
1. функция следования S ;
2. функции выбора
,
3.
4. нулевая функция .
Определение 3: (оператор суперпозиции (подстановка)).
Говорят, что функция получена суперпозицией из функций и , если для всех значений выполняется равенство:
Определение 4: (оператор примитивной рекурсии ).
Говорят, что функция получена из двух функций и с помощью оператора примитивной рекурсии, если имеют место следующие равенства:
.
Это определение применимо и при n=0. Говорят, что функция получена из одноместной функции константы равной и функции , если при всех :
Определение 5: (-оператор или оператор минимизации).
Определим -оператор сначала для одноместных функций.
Будем говорить, что функция получена из частичной функции с помощью оператора, если,
.
В этом случае -оператор называется оператором обращения и -наименьшее .
Теперь определим -оператор в общем виде:
Определение 6:
Функция называется частично рекурсивной функцией (ЧРФ) ,если она может быть получена из начальных функций с помощью конечного числа применений трех операторов: суперпозиции, примитивной рекурсии, -оператора.
Определение 7:
Если - ЧРФ и всюду определена, то она называется рекурсивной функцией.
Определение 8:
Множество - рекурсивно перечислимо (РП), в интуитивном смысле, если существует эффективная процедура, которая выписывает элементы этого множества. Каждый элемент на некотором шаге будет выписан.
Определение 9:
Характеристической функцией множества называется функция
Определение 10:
Множество называется рекурсивным, если характеристическая функция является рекурсивной.
Определение 11:
Функция m-сводима к функции (), в точности тогда, когда существует рекурсивная функция , такая, что
Функция называется сводящей функцией.
Введем отношение m-эквивалентности на множестве .
Определение 12:
Введем понятие m-степени функции .
Определение 13:
Введем понятие m-сводимости множеств.
Определение 14:
Множество m-сводимо к множеству (обозначение ), если существует рекурсивная функция такая, что В этом случае говорят, что m-сводимо к посредством .
Аналогично вводится понятие m-степени множества .
Определение 15:
Частичная характеристическая функция для множества -функция
Определение 16:
ЧРФ - универсальная для множества , если (-рекурсивная функция ) где - ЧРФ с геделевым номером .
Определение 17:
Если на множестве определено бинарное отношение , удовлетворяющее условиям:
1. (рефлексивность);
2. (антисимметричность);
3. (транзитивность),
то множество называется частично упорядоченным, а отношение называется частичным порядком на . Отношение , удовлетворяющее только свойствам 1,3, называется предпорядком на . Если частичный порядок на удовлетворяет условию
4. то называется линейным порядком (или просто порядком), а -линейно упорядоченным множеством или цепью.
Определение 18:
Верхней (нижней) гранью подмножества называется такой элемент что () для любого . Элемент называется max (min) элементом , если () для всех
Если же () для любых ? ,то элемент называется наибольшим (наименьшим).
Определение 19.
Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.
Определение 20.
Полурешеткой (точнее, верхней полурешеткой) назовем пару где - непустое множество, а -бинарная операция на , удовлетворяющая условиям: для любого
1.
2.
3.
Если - полурешетка, то зададим на частичный порядок следующим соотношением: для
Проверка того, что это частичный порядок, очевидна. Операция является для этого порядка операцией взятия точной верхней грани.
Определение 21:
Множество называется продуктивным, если существует рекурсивная функция , называемая продуктивной функцией для , такая, что
Ясно, что продуктивное множество не может быть р.п. Если бы то Ш, что невозможно.
Определение 22:
Множество называется креативным, если оно р.п. и продуктивно.
Заметим, что креативные множества по теореме Поста не могут быть рекурсивными. Примером креативного множества будет
Действительно
откуда рекурсивная функция является продуктивной функцией для .
Имеет место следующее утверждение: если В - р.п. множество, А -креативно, то - креативно. [1,5]