Поняття фракталів

реферат

2.2 Системи Ітеріруємих Функцій

У евклідовом просторі відстань (x;y) між точками x=(;) і y=(;) визначається за допомогою наступної формули

Відстань в просторі можна також вимірювати функцією (x;y)=|-|+|-|.

Дві приведені функції, будучи вимірами відстані, по-різному визначають відстані між двома точками. Існують чотири основні властивості функції відстані:

ь відстані від точки x до точки y і від точки y до точки x рівні: d(x;y)=d(у;x);

ь відстань від точки x до цієї ж точки x дорівнює нулю: d(x;x)=0;

ь відстань по прямій - це найкоротша відстань між двома точками: d(x;y) <=d(x;z)+d(z;y);

ь для двох точок x і у функція відстані має бути дійсною, скінченою і додатною : .

Функція відстані, що задовольняє даним властивостям, називається метрика.

Метричний простір (X,d) - множина точок X разом з метрикою d, визначеною на X.

Перетворення - зіставлення, згідно заздалегідь визначеному правилу, точці в одному просторі точки в іншому (можливо і в тому ж самому просторі).

Відображення, це перетворення, яке переводить простір X1 в простір X2 і позначається fn: X1 X2.

Стиснююче відображення - перетворення в метричному просторі X1 X2 за умови існування коефіцієнта стиснення перетворення f: 0s<1 такого, що d(f(x1),f(x2)) sd(x1,x2) для всіх

Система ітеріруємих функцій (Iterated Function System) складається з повного метричного простору (X,d) і скінченної множини стиснюючих відображень fn: X1 X2 з коефіцієнтами стиснення Sn.

Делись добром ;)