Построение краткосрочного прогноза в рамках адаптивной модели

дипломная работа

1.4.1 Авторегрессия первого порядка AR(1)

Рассмотрим процесс X(t), значения которого в момент времени t формируется как комбинация значений этого процесса в предшествующий момент t-1 и некоторой случайной составляющей , независимой от значения X(t-l).

Процессы такого типа могут описывать как экономические, так и технологические временные ряды. Мы предположим, что - это процесс белого шума, т.е. что в разные моменты t случайные величины независимы и одинаково распределены по нормальному закону с математическим ожиданием равным нулю и дисперсией D.

Определение. Случайный процесс X(t) называют процессом авторегрессии первого порядка (коротко AR(1)), если для него выполняется соотношение

(7)

где - параметр авторегрессии.

С помощью соотношения (7) можно задать значение процесса X(t) в любой момент времени через значения процесса X(t), если известна величина в момент .

Определим числовые характеристики стационарного процесса авторегрессии. Пусть

Взяв математическое ожидание от обеих частей (7), получим, что . Отсюда следует, что , если . Взяв дисперсию от обеих частей (7), получим, что . Отсюда следует (учитывая, что ), что

Таким образом, для стационарного процесса AR(1) получаем, что и для любых t и k

Похожим приемом можно вычислить при k= 1,2,.... Чтобы вычислить умножим (7) на и возьмем математическое ожидание. Получаем, что . Так как и независимы, то Поэтому , т.е.

Для вычисления заметим, что, согласно (7) а потому . Последнее равенство умножим на и возьмем математическое ожидание. Вычисляя, как выше, найдем, что

Аналогичным образом вычисляем (здесь соотношение (7) надо применить дважды). Получаем, что . Действуя, таким образом, и далее, найдем для любого k, что

Из этих соотношений следует, что

(8)

Таким образом, автокорреляционная функция AR(1) процессов экспоненциально убывает с ростом поправки k. Обратим внимание, что чем ближе значение к единице, тем более гладко ведет себя траектория процесса AR(1) по сравнению с траекторией белого шума. И наоборот, чем ближе значение к минус единице, тем более изломанно (пилообразно) ведет себя траектория.

Стационарный процесс авторегрессии первого порядка с ненулевым средним . определяется соотношением:

(9)

Здесь

Учитывая стационарность процесса X(t), в качестве оценки можно взять среднее по траектории: где . Еще ранее для мы получили, что

Заменяя его оценкой по траектории, получаем для оценку:

(10)

Наконец, уже известное соотношение DX(t) позволяет оценить и Для этого можно воспользоваться стандартной оценкой дисперсии DX(t) стационарного процесса:

Отсюда

(11)

Делись добром ;)