Представление функции рядом Фурье

курсовая работа

Случай произвольного промежутка

Предположим, что функция задана в промежутке произвольной длины и кусочно-дифференцируема в нем. Если прибегнуть к подстановке

,

то получится функция от в промежутке , тоже кусочно-дифференцируемая, к которой уже приложим рассмотрения предыдущего параграфа. Как мы видели, за исключением точек разрыва и концов промежутка, можно разложить ее в ряд Фурье:

коэффициенты которого определяются формулами Эйлера--Фурье:

вернемся теперь к прежней переменной , полагая

.

Тогда получим разложение заданной функции в тригонометрический ряд несколько измененного вида:

(19)

Здесь косинусы и синусы берутся от углов, кратных не , а . Можно было бы и формулы для определения коэффициентов разложения преобразовать той же подстановкой к виду

(20)

В отношении концов промежутка сохраняют силу замечания, сделанные в предыдущем параграфе относительно точек Конечно, промежуток может быть заменен любым другим промежутком длинны в частности, промежутком . В последнем случае формулы (20) должны быть заменены формулами

(20a)

Делись добром ;)