Представление функции рядом Фурье

курсовая работа

Случай четных и нечетных функций

Если заданная в промежутке функция будет нечетной, то очевидно

В этом легко убедится:

.

Таким же путем устанавливается, что в случае четной функции :

.

Пусть теперь будет кусочно-дифференцируемая в промежутке четная функция. Тогда произведение окажется нечетной функцией, и по сказанному

Таким образом, ряд Фурье четной функции содержит одни лишь косинусы:

(21)

Так как в этом случае будет тоже четной функцией, то, применив сюда второе из сделанных выше замечаний, можем коэффициенты разложения написать в виде

(22)

Если же функция будет нечетной, то нечетной будет и функция , так что

Мы приходим к заключению, что ряд Фурье нечетной функции содержит одни лишь синусы:

(23)

При этом ввиду четности произведения можно писать:

(24)

Отметим, что каждая функция , заданная в промежутке , может быть представлена в виде суммы четной и нечетной составляющих функций:

,

Где

Очевидно, что ряд Фурье функции как раз и составится из разложения по косинусам функции и разложения по синусам функции .

Предположим, далее, что функция задана лишь в промежутке . Желая разложить ее в этом промежутке в ряд Фурье мы дополним определение нашей функции для значений x в промежутке по произволу, но с сохранением кусочной дифференцируемости, а затем применим сказанное в пункте «Случай непериодической функции».

Можно использовать произвол в определении функции в промежутке так, что бы получить для разложение только лишь по косинусам или только по синусам. Действительно, представим семе, что для мы полагаем , так что в результате получается четная функция в промежутке . Ее разложение, как мы видели, будет содержать одни лишь косинусы. Коэффициенты разложения можно вычислять по формулам (22), куда входят лишь значения первоначально заданной функции .

Аналогично, если дополнить определение функции по закону нечетности, то она станет нечетной и в ее разложении будут одни лишь синусы. Коэффициенты ее разложения определяются по формулам (24).

Таким образом, заданную в промежутке функцию при соблюдении условий оказывается возможным разлагать как по косинусам, так и по одним лишь синусам.

Особого исследования требуют точки и . Здесь оба разложения ведут себя по-разному. Предположим, для простоты, что заданная функция непрерывна при и , и рассмотрим сначала разложение по косинусам. Условие , прежде всего, сохраняет непрерывность при , так что ряд (21) при будет сходиться именно к . Так как, далее,

то и при имеет месть аналогичное обстоятельство.

Иначе обстоит дело с разложением по синусам. В точках и сумма ряда (23) явно будет нулем. Поэтому она может дать нам значения и , очевидно, лишь в том случае, если эти значения равны нулю.

Если функция задана в промежутке то, прибегнув к той же замене переменной, что и в предыдущем параграфе, мы сведем вопрос о разложении ее в ряд по косинусам

или в ряд по синусам

к только что рассмотренному. При этом коэффициенты разложений вычисляются, соответственно, по формулам

или

.

Делись добром ;)