Види розподілу ймовірностей й оцінка його параметрів

курсовая работа

4. Розподіл Пуассона

Нехай виробляється п незалежних іспитів, у кожнім з який імовірність появи події А дорівнює р. Для визначення імовірності k появ події в цих іспитах використовують формулу Бернуллі. Якщо ж п велико, то користаються асимптотичною формулою Лапласа. Однак, ця формула непридатна, якщо імовірність події мала (р?0,1). У цих випадках (п велико, р мало) прибігають до асимптотичною формулою Пуассона.

Отже, поставимо своєю задачею знайти імовірність того, що при дуже великому числі іспитів, у кожнім з який імовірність події дуже мала, подія наступить рівно k раз.

Зробимо важливе допущення: добуток пр зберігає постійне значення, а саме і пр=л. Як буде випливати з подальшого це означає, що середнє число появ події в різних серіях іспитів, тобто при різних значеннях п, залишається незмінним. Скористаємося формулою Бернуллі для обчислення цікавлячої нас імовірності:

Тому що пр=л те Отже,

Прийнявши в увагу, що п має дуже велике значення, замість знайдемо . При цьому буде знайдене лише наближене значення імовірності, що відшукується: хоча і велико, але звичайно, а при відшуканні межі ми спрямуємо п д о нескінченності. Отже,

Отже (для простоти запису знак наближеної рівності опущений),

Ця формула виражає закон розподілу Пуассона імовірностей масових (п велике) рідких (р мале) подій.

Зауваження. Маються спеціальні таблиці користаючись якими можна з найти Pn(k). знаючи k і л.

Делись добром ;)