Применение производной при нахождении предела

курсовая работа

4.2 Остаток в форме Пеано

Теорема 1. Если функция f (x) (n-1) - раз дифференцируема в окрестности U= (x0-a,x0+a) точки x0 и существует f (n) (x0), то имеет место равенство

.

Другими словами

(5)

Доказательство. Для краткости будем обозначать R (x) =Rn (x)

(10)

(11)

(1m)

(1n-1)

f (n-1) (x) дифференцируема в точке x0, поэтому

Откуда

По правилу Лопиталя

Теорема 2. (Единственность представления функции по формуле Тейлора) Если f имеет n-ю производную в точке x0 и

,

то

Лемма. Если

, (2)

то bk=0, k=0,1,…,n

Доказательство. в (2) перейдем к пределу при x x0, получим

b0 = 0,,

делим полученное выражение на (x-x0) и переходим к пределу при x x0 и т.д.

Доказательство теоремы.

откуда и следует утверждение.

Делись добром ;)