Произведение двух групп

курсовая работа

3. Произведение разрешимой и циклической групп

В настоящей заметке доказывается следующая

Теорема 1. Пусть конечная группа является произведением разрешимой подгруппы и циклической подгруппы и пусть . Тогда , где - нормальная в подгруппа, и или для подходящего .

означает произведение всех разрешимых нормальных в подгрупп.

Следствие. Если простая группа является произведением разрешимой и циклической подгрупп, то .

Несмотря на то, что среди при нечетном нет групп факторизуемых разрешимой подгруппой и циклической, группы допускают указанную факторизацию для каждого .

Из теоремы 1 вытекает

Теорема 2. Конечная группа, являющаяся произведением 2-нильпотентной подгруппы и циклической подгруппы, непроста. Если циклический фактор имеет нечетный порядок, то группа разрешима.

Работа состоит из двух параграфов. В первом параграфе приводятся необходимые вспомогательные результаты. Кроме того, доказывается теорема 3, которая является обобщением теоремы Виландта о разрешимости внешней группы автоморфизмов простой группы, содержащей подгруппу простого индекса. В 3.2 доказываются теоремы 1 и 2.

Все обозначения и определения стандартны. Запись означает, что конечная группа является произведением своих подгрупп и .

Делись добром ;)