Рівносильні та рівновеликі багатокутники

курсовая работа

1.1 Леми та теореми рівносильності та рівновеликості як методів розрахунку площ багатокутників

Означення. Багатокутником називається замкнута ламана без самоперетинань. Багатокутник розбиває площину на дві частини, одна йз яких обмежена й називається внутрішністю багатокутника (насправді це твердження, називане теоремою Жордана для багатокутників, не зовсім очевидно) [7].

Означення. Багатокутник називається опуклим, якщо для будь-яких двох точок, що лежать усередині нього, усередині нього лежить також відрізок, який їх зєднує.

Два багатокутники називають рівносильними (рівноскладеними), якщо один з них можна розрізати на багатокутники й скласти з них іншої. Очевидно, що рівноскладені багатокутники є рівнове-ликими. Виявляється, вірно й зворотне [7].

Теорема Бойя і Гервіна. Будь-які два рівновеликих багатокутники рівноскладені [6].

Так, як ілюстрація умов теореми, на рис.1.1. наведений приклад компьютерної анімації розрізання трикутника на чотири частини (багатокутники) та складання з них квадрату методом послідовного повертання розрізаних частин.

Рис. 1.1 Приклад перетворення рівноскладених та рівновеликих багатокутників (рівнобічний трикутник у квадрат)

Приведемо математичне доказування теореми [6].

Багатокутники P і P називаються рівноскладеними, якщо вони допускають розбивки на рівні багатокутники (тобто існують такі розбивки {M1,..., Mn} і {M1,..., Mn} багатокут-ників P і P відповідно, що Mi = Mi при всіх i < n). Очевидно, що рівноскладені багатокут-ники мають однакову площу. Чи вірно зворотне твердження? Перш ніж відповісти на це питання, доведемо кілька допоміжних тверджень.

Лема 1. Якщо багатокутник P1 рівноскладений з багатокутником P2 і багатокутник P2, у свою чергу, рівноскладений з P3, то P1 і P3 також рівноскладені.

Лема 2. Будь-який трикутник ABC рівноскладений з деяким прямокутником.

Доведення. Нехай [AB] - більша сторона трикутника ABC (рис.1.2). Тоді підстава висоти [CH] належить відрізку [AB]. Через точку M - середину висоти [CH] - проведемо пряму a, паралельну (AB). Позначимо через P, L, E і F точки перетинання прямій a зі сторонами [AC] і [BC], а також проекції точок A і B на пряму a відповідно.

Рис.1.2 До Доведення Леми 2

Тепер рівноскладеність ? ABC і прямокутника AEFB витікає з умов ? AEP = ?CMP, ?BFL = ?CML. Лема доведена.

Лема 3. Якщо паралелограми ABCD і KLMN мають загальну основу й однакову площу, то вони рівноскладені.

Доведення. Будемо вважати, що відрізки [AB] і [KL] збігаються, і точки M і N лежать на прямій (CD) - рис.1.3. Розглянемо окремо два випадки взаємного розташування відрізків [CD] і [MN]. Перший випадок. Нехай відрізки [CD] і [MN] перетинаються. Не обмежуючи спільності, припустимо, що точка C лежить на відрізку [MN].

Рис.1.3 До доведення Леми 3 Рис.1.4 До доведення Леми 3

Тоді рівноскладеність ABCD і ABMN витікає з умови ?DAN = ?CBM.

Другий випадок. Якщо відрізки [CD] і [MN] не перетинаються, то відкладемо послідовно точки C1 = C,...,Cn так, що [CiCi+1] = [CD] при i ? n?1 і відрізок [Cn?1Cn] перетинає [MN] - рис.1.4.

Тепер до ланцюжка паралелограмів ABCD, ABC1C2,..., ABCn?1Cn, ABMN досить застосувати перший випадок і лему 1. Лема доведена.

Лема 4. Якщо прямокутники ABCD і KLMN мають однакову площу, то вони рівноскладені.

Доведення. Не обмежуючи спільності міркування, будемо вважати, що відрізок [AB] - найбільша зі сторін даних прямокутників - рис.1.5. Тоді на промені [ML) найдуться такі точки P і S, що S ? [PM], [PS] = [KN] і [SN] = [AB]. Чотирикутники ABCD і KNSP, а також KNSP і KLMN рівноскладені по попередній лемі. Тоді з леми 1 витікає, що ABCD і KLMN рівноскладені. Лема доведена.

Рис.1.5 До доведення Леми 4

Лема 5. Будь-який багатокутник M рівноскладений з деяким прямокутником.

Доведення. Нехай {Ti: i < n} - розбивка M на трикутники. Зафіксуємо деякий нетривіальний відрізок [A1B1] . Через точки A1 і B1 перпендикулярно прямій (A1B1) проведемо дві прямі. На цих прямих виберемо сонаправлені промені [A1X) і [B1Y). На промені [A1X) виберемо послідовно точки A2,...,An+1, а на промені [B1Y) - точки B2,...,Bn+1 так, що площа прямокутника AiAi+1Bi+1Bi дорівнює площі трикутника Ti при i < n. З лем 2 і 4 треба, що Ti і AiAi+1Bi+1Bi рівноскладені. Виходить, M і A1An+1Bn+1B1 рівноскладені. Лема доведена.

Теорема 1. [ Бойяи-Гервин] Багатокутники M і N равноскладені тоді й тільки тоді, коли вони рівновеликі.

Доведення. Равноскладені багатокутники - мають рівні площі. Доведемо зворотне твердження.

Нехай SM = SN. По лемі 5 для M і N найдуться такі прямокутники ABCD і A1B1C1D1, що M і ABCD, а також N і A1B1C1D1 рівноскладені. З рівностей SABCD = SM = SN = SA1B1C1D1 і леми 4 витікає рівноскладеність ABCD і A1B1C1D1. Тепер рівноскладеність M і N витікає з леми 1. Теорема доведена.

Близьким до поняття рівноскладеності є рівнодоповнюємість багатокутників.

Наприклад, паралелограм ABCD і прямокутник EFGH на рис.1.6 - рівнодоповнюємі.

Рис.1.6 До рівнодоповнюємості багатокутників

Звідси витікає рівність площ цих чотирикутників.

Теорема 2. Багатокутники M і N рівнодоповнюємі тоді й тільки тоді, коли вони рівновеликі.

Доведення. Рівновеликість двох рівнодоповнених багатокутників очевидна. Нехай тепер SM = SN. Існують два рівних по площі квадрата K1 і K2, які містять M і N відповідно. На рис.1.7 наведений приклад рівновеликих та рівнодоповнюємих багатокутників - „грецького хреста” та відповідного квадрату, який отримуємо „ відрізанням” та доповненням відповідних трикутників 2,3,4,5 до основної фігури 1.

"right">2

Рис.1.7 Рівнодоповнення „грецького хреста” в рівновеликий (рівноскладений) квадрат

Делись добром ;)