Рішення лінійних рівнянь першого порядку

курсовая работа

7. Задача Коші для матричного методу

Необхідно із всіх рішень системи рівнянь знайти таке рішення, у якому y (i) (t) приймає задане числове значення y0i у заданій крапці, тобто знайти значення сi для наступних заданих значень: x=0, y= [1, 2, 3,4].

У вектор рішень y (t) підставляємо задані умови й вирішуємо отриману систему відносно c1, c2, c3, c4:

У результаті одержуємо:

При підстановці c1, c2, c3, c4 у загальне рішення одержимо рішення у формі Коші:

Зробимо перевірку, підставивши загальне рішення у вихідну систему

:

Вийшов нульовий вектор . Отже, знайдена матриця є рішенням вихідної системи.

Дослідження залежності жордановой форми матриці А від властивостей матриці системи.

Нехай J - жорданова клітка матриці А. Для випадку дійсних різних корінь жорданова клітка буде виглядати в такий спосіб:

Нехай серед дійсних власних чисел матриці А є кратні. Жорданова клітка буде перебувати по наступній формулі:

Наприклад, якщо кратність k=2, те жорданову клітку матриці ми можемо записати так:

Якщо кратність k=3, то жорданову клітку матриці ми можемо записати так:

Якщо ж серед трьох власних чисел є коріннями кратності 2, то жорданова форма буде виглядати в такий спосіб:

Якщо два власних числа матриці А є комплексними сполученими, то запис жордановой клітки буде виглядати так:

де - дійсна, - мнима частина власного числа .

Делись добром ;)