Сечение многогранников

курсовая работа

1.1 Точка, прямая и плоскость в пространстве. Векторы

Понятие точка является определяющим понятием пространства, любая фигура пространства состоит из множества точек. Хранение в памяти компьютера информации о элементах пространства будем осуществлять с помощью хранения координат точек определяющих данный элемент пространства. Так для хранения информации о прямой достаточно всего двух различных точек принадлежащих этой прямой. По двум точкам задающим прямую можно составить каноническое уравнение прямой и далее оперировать этим уравнением:

, (1?)

где точки и принадлежат данной прямой. Или если использовать вектор т.е. , получим следующее уравнение прямой:

. (1??)

Аналогично прямой, плоскость определяется тремя точками:

, (2?)

где точки , , принадлежат данной плоскости из этой матрицы можно получить уравнение плоскости:

, (2??)

где коэффициенты ,,, определяются следующим способом:

;

;

;

.

Причем из этих формул полезно знать, что координатами вектора нормального к данной плоскости являются соответственно коэффициенты ,,. Этот вектор направлен в полупространство правого обхода точек.

Решая совместно уравнения (1??) и (2??) найдем координаты точки пересечения прямой и плоскости, при условии, что прямая пересекает плоскость. Пусть плоскость задана тремя точками: , , , а прямая задана двумя точками: и , тогда координаты точки пересечения находятся по формулам:

,

где , причем если , то ; (1x)

,

где , причем если , то ; (1y)

,

где , причем если , то . (1z)

В этих формулах координаты вектора для прямой вычисляется следующим образом: .

Делись добром ;)