logo
Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора

Обратный оператор. Обратимость

Пусть А - оператор, действующий из Е в Е1, и DA - область определения, а RA - область значений этого оператора.

Определение: Оператор А называется обратимым, если для любого уравнение

имеет единственное решение.

Если А обратим, то каждому можно поставить в соответствие единственный элемент , являющийся решением уравнения . Оператор, осуществляющий это соответствие, называется оператором обратным к А и обозначается .

Рассмотрим оператор, переводящий конечномерное пространство в конечномерное. Выше было сказано, что он задаётся матрицей коэффициентов. Таким образом, оператор обратим, если обратима матрица коэффициентов, которой он задаётся. А матрица обратима лишь в том случае, если её определитель не равен нулю. То есть матрицы, которые имеют ненулевой определитель, задают обратимый оператор, переводящий конечномерное пространство в конечномерное.

Теорема: Оператор , обратный к линейному оператору А, также линеен.

Теорема Баноха об обратном операторе: Пусть А - линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор тоже ограничен.

Теорема: Пусть ограниченный линейный оператор А0, отображающий банахово пространство Е на банахово пространство Е1, обладает ограниченным обратным и пусть - такой ограниченный линейный оператор, отображающий Е в Е1, что . Тогда оператор А= отображает Е на Е1 и обладает ограниченным обратным.

Теорема: Пусть Е - банахово пространство, I - тождественный оператор в Е, а А - такой ограниченный линейный оператор, отображающий Е в себя, что норма . Тогда оператор существует, ограничен и представляется в виде

.